Ask Your Question

Revision history [back]

how to compute x^ip (mod P) in F2

hello

i want to compute x^iq (mod P) for q=2,0<=i<=3. By using the Euclidean algorithm; but i don

p=3 X=ZZ['X'].gen() P=1+X+X^2+X^3 K.<X>=GF(p)['X'].quotient(P) K.<X> = PolynomialRing(GF(2),'X') X = K.gen() S = K.quotient(P, 'X') X = S.gen() M=matrix([(X^(p*i).list() for i in range(p)]).transpose() but my matrix M does not correspond to what i have when i do it by hand. thanks

click to hide/show revision 2
None

how to compute x^ip (mod P) in F2

hello

i want to compute x^iq (mod P) for q=2,0<=i<=3. By using the Euclidean algorithm; but i don

p=3
X=ZZ['X'].gen()
P=1+X+X^2+X^3
K.<X>=GF(p)['X'].quotient(P)
p = 3
X = ZZ['X'].gen()
P = 1+X+X^2+X^3
K.<X> = GF(p)['X'].quotient(P)
K.<X> = PolynomialRing(GF(2),'X')
X = K.gen()
S = K.quotient(P, 'X')
X = S.gen()
M=matrix([(X^(p*i).list() M = matrix([(X^(p*i).list() for i in range(p)]).transpose()

but my matrix M does not correspond to what i have when i do it by hand. thanks