Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage : P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,="" order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage : P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,="" order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage : P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,="" order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Blockquote

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage :

P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,="" order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Blockquote

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage :

P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,="" order="’lex" ,order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Blockquote

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage : P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,order="’lex" ’)<="" p=""> "="">" = PolynomialRing (GF(11) ,order =’lex ’)

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Blockquote

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage : P.<x ,y="" "="">" = PolynomialRing (GF(11) ,order =’lex ’)&gt;="PolynomialRing" (gf(11)="" ,order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Blockquote

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage : P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,order="’lex" ’)<="" p="">

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

sage : I = Ideal ( f1 , f2 )

sage : I. groebner_basis ()

Blockquote

Algorithm for Grobner Basis

We can calculate Groebner Basis as follows: I want to know the corresponding algorithm. Is it F5?

sage :  P.<x ,y="" &gt;="PolynomialRing" (gf(11)="" ,order="’lex" ’)<="" p="">
,y> = PolynomialRing (GF(11) ,order =’lex ’)
 

sage : f1 = (x -1)^2 + (y -2)^2 - 3^2

3^2

sage : f2 = ( x +1)^2 + (y -1)^2 - 2^2

2^2

sage : I = Ideal ( f1 , f2 )

)

sage : I. groebner_basis ()

()