Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command to implicit plot, like saying "take this connected component of the curve" (e.g. in the example, passing through $(-1,0)$?)

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to implicit plot, like saying "take `implicit plot' which has the effect of "taking this connected component of the curve" solution" (e.g. in the example, passing through $(-1,0)$?)

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?)

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?)$(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

I excluded the curve to make this a minimal example, but it's probably helpful to know that I don't know how to easily parametrize it. Is something like

-1/720*x^6*y*cos(sqrt(2)*pi) + 1/144*x^4*y^3*cos(sqrt(2)*pi) - 1/240*x^2*y^5*cos(sqrt(2)*pi) + 1/5040*y^7*cos(sqrt(2)*pi) - 1/5040*x^7*sin(sqrt(2)*pi) + 1/240*x^5*y^2*sin(sqrt(2)*pi) - 1/144*x^3*y^4*sin(sqrt(2)*pi) + 1/720*x*y^6*sin(sqrt(2)*pi) + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10)) + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*sin(2/5*sqrt(2)*pi)*sin(7/2*arctan2(0, -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) + x*y + 5/56*720^(2/5)*sqrt(5)*sin(2/5*sqrt(2)*pi) - 5/56*720^(2/5)*sin(2/5*sqrt(2)*pi)

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

I excluded the curve to make this a minimal example, but it's probably helpful to know that I don't know how to easily parametrize it. Is something like

-1/720*x^6*y*cos(sqrt(2)*pi)    implicit_plot(-1/720*x^6*y*cos(sqrt(2)*pi) + 1/144*x^4*y^3*cos(sqrt(2)*pi) - 1/240*x^2*y^5*cos(sqrt(2)*pi) + 1/240*x^2*y^5*cos(sqrt(2)*pi)+ 1/5040*y^7*cos(sqrt(2)*pi) - 1/5040*x^7*sin(sqrt(2)*pi) + 1/240*x^5*y^2*sin(sqrt(2)*pi) - 1/144*x^3*y^4*sin(sqrt(2)*pi) -1/144*x^3*y^4*sin(sqrt(2)*pi) + 1/720*x*y^6*sin(sqrt(2)*pi) +1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10))   + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10)) + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*sin(2/5*sqrt(2)*pi)*sin(7/2*arctan2(0, -2*sqrt(5) + 10)) - 10))- 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0,  -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)   *sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)   *cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5)  + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10)) + 10))+ 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0,  -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5)  + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10))  + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5)  + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5)  + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10))  - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5)  + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5)  + 10)) + x*y + 5/56*720^(2/5)*sqrt(5)*sin(2/5*sqrt(2)*pi) - 5/56*720^(2/5)*sin(2/5*sqrt(2)*pi)
5/56*720^(2/5)*sin(2/5*sqrt(2)*pi), (x,-10,10), (y,-10,10))

This has many connected components (on the finite plane). Cannot upload the plot yet.

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

I excluded the curve to make this a minimal example, but it's probably helpful to know that I don't know how to easily parametrize it. Is something like

   implicit_plot(-1/720*x^6*y*cos(sqrt(2)*pi) + 1/144*x^4*y^3*cos(sqrt(2)*pi) - 1/240*x^2*y^5*cos(sqrt(2)*pi)+ 1/5040*y^7*cos(sqrt(2)*pi) - 1/5040*x^7*sin(sqrt(2)*pi) + 1/240*x^5*y^2*sin(sqrt(2)*pi) -1/144*x^3*y^4*sin(sqrt(2)*pi) + 1/720*x*y^6*sin(sqrt(2)*pi) +1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10))   + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*sin(2/5*sqrt(2)*pi)*sin(7/2*arctan2(0, -2*sqrt(5) + 10))- 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0,  -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)   *sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)   *cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5)  + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10))+ 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0,   -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5)  + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10))  + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5)  + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5)  + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10))  - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5)  + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5)  + 10)) + x*y + 5/56*720^(2/5)*sqrt(5)*sin(2/5*sqrt(2)*pi) - 5/56*720^(2/5)*sin(2/5*sqrt(2)*pi), (x,-10,10), (y,-10,10))

This has many connected components (on the finite plane). plane), the square root of two is just to match another conventions, you could ignore it. Cannot upload the plot yet.

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

I excluded the curve to make this a minimal example, but it's probably helpful to know that I don't know how to easily parametrize it. Is something like

   implicit_plot(-1/720*x^6*y*cos(sqrt(2)*pi) + 1/144*x^4*y^3*cos(sqrt(2)*pi) - 1/240*x^2*y^5*cos(sqrt(2)*pi)+ 1/5040*y^7*cos(sqrt(2)*pi) - 1/5040*x^7*sin(sqrt(2)*pi) + 1/240*x^5*y^2*sin(sqrt(2)*pi) -1/144*x^3*y^4*sin(sqrt(2)*pi) + 1/720*x*y^6*sin(sqrt(2)*pi) +1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10))   + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*sin(2/5*sqrt(2)*pi)*sin(7/2*arctan2(0, -2*sqrt(5) + 10))- 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0,  -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)   *sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)   *cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5)  + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10))+ 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0,   -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5)  + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10))  + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5)  + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5)  + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10))  - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5)  + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5)  + 10)) + x*y + 5/56*720^(2/5)*sqrt(5)*sin(2/5*sqrt(2)*pi) - 5/56*720^(2/5)*sin(2/5*sqrt(2)*pi), (x,-10,10), (y,-10,10))

This has many connected components (on the finite plane), the square root of two is just to match another conventions, you could ignore it. this and any numbertheoretical stuff, just think about the sort of not low degree polynomial in two variables. Cannot upload the plot yet.

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

implicit_plot(x^2-y^2-1,(x,-2,2),(y,-2,2))
sage: x, y = SR.var('x, y', domain='real')
sage: F0 = x^2 - y^2 - 1
sage: B0 = 3.5
sage: G0 = implicit_plot(F0, (x, -B0, B0), (y, -B0, B0), gridlines=True)
sage: G0.show(figsize=5)
Launched png viewer for Graphics object consisting of 1 graphics primitive

Implicit plot of hyperbola

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

I excluded the curve to make this a minimal example, but it's probably helpful to know that I don't know how to easily parametrize it. Is something like

 implicit_plot(-1/720*x^6*y*cos(sqrt(2)*pi) sage: F = -1/720*x^6*y*cos(sqrt(2)*pi) + 1/144*x^4*y^3*cos(sqrt(2)*pi) - 1/240*x^2*y^5*cos(sqrt(2)*pi)+ 1/5040*y^7*cos(sqrt(2)*pi) - 1/5040*x^7*sin(sqrt(2)*pi) + 1/240*x^5*y^2*sin(sqrt(2)*pi) -1/144*x^3*y^4*sin(sqrt(2)*pi) + 1/720*x*y^6*sin(sqrt(2)*pi) +1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10))   + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*sin(2/5*sqrt(2)*pi)*sin(7/2*arctan2(0, -2*sqrt(5) + 10))- 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0,  -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)   *sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)   *cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5)  + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10))+ 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0,   -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5)  + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10))  + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5)  + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5)  + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10))  - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5)  + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5)  + 10)) + x*y + 5/56*720^(2/5)*sqrt(5)*sin(2/5*sqrt(2)*pi) - 5/56*720^(2/5)*sin(2/5*sqrt(2)*pi), (x,-10,10), (y,-10,10))
5/56*720^(2/5)*sin(2/5*sqrt(2)*pi)
sage: B = 7.5
sage: G = implicit_plot(F, (x, -B, B), (y, -B, B), gridlines=True)
sage: G.show(figsize=5)

Implicit plot of degree 7 function of x and y

This has many connected components (on the finite plane), the square root of two is just to match another conventions, you could ignore this and any numbertheoretical number-theoretical stuff, just think about the sort of not low degree polynomial in two variables. Cannot upload the plot yet.

Is there a way to select the connected component of a curve with `implicit_plot'?

I'd like to plot one of the connected components of a plot. This is like

sage: x, y = SR.var('x, y', domain='real')
sage: F0 = x^2 - y^2 - 1
sage: B0 = 3.5
sage: G0 = implicit_plot(F0, (x, -B0, B0), (y, -B0, B0), gridlines=True)
sage: G0.show(figsize=5)
Launched png viewer for Graphics object consisting of 1 graphics primitive

Implicit plot of hyperbola

which one could solve and manually select the connected components. In my case, I deal with an equation that is inconvenient to plot directly from the solution. Is there a command or a feature to `implicit plot' which has the effect of "taking this connected component of the solution" (e.g. in the example, passing through $(-1,0)$?) Also I wouldn't like to restrict to either positive or negative $x$ (my curve is somehow more complicated and restricting to regions doesn't work).

I excluded the curve to make this a minimal example, but it's probably helpful to know that I don't know how to easily parametrize it. Is something like

   sage: F = -1/720*x^6*y*cos(sqrt(2)*pi) + 1/144*x^4*y^3*cos(sqrt(2)*pi) - 1/240*x^2*y^5*cos(sqrt(2)*pi)+ 1/5040*y^7*cos(sqrt(2)*pi) - 1/5040*x^7*sin(sqrt(2)*pi) + 1/240*x^5*y^2*sin(sqrt(2)*pi) -1/144*x^3*y^4*sin(sqrt(2)*pi) + 1/720*x*y^6*sin(sqrt(2)*pi) +1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*cos(2/5*sqrt(2)*pi)*cos(7/2*arctan2(0, -2*sqrt(5) + 10))   + 1/114688*720^(2/5)*abs(-2*sqrt(5) + 10)^(7/2)*sin(2/5*sqrt(2)*pi)*sin(7/2*arctan2(0, -2*sqrt(5) + 10))- 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0,  -2*sqrt(5) + 10)) - 3/8192*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(5/2)*sin(2/5*sqrt(2)*pi)   *sin(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5) + 10)^(5/2)   *cos(2/5*sqrt(2)*pi)*cos(5/2*arctan2(0, -2*sqrt(5) + 10)) - 9/8192*720^(2/5)*abs(-2*sqrt(5)  + 10)^(5/2)*sin(2/5*sqrt(2)*pi)*sin(5/2*arctan2(0, -2*sqrt(5) + 10))+ 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0,   -2*sqrt(5) + 10)) + 15/2048*720^(2/5)*sqrt(5)*abs(-2*sqrt(5)  + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5) + 10))  + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*cos(2/5*sqrt(2)*pi)*cos(3/2*arctan2(0, -2*sqrt(5) + 10)) + 35/2048*720^(2/5)*abs(-2*sqrt(5) + 10)^(3/2)*sin(2/5*sqrt(2)*pi)*sin(3/2*arctan2(0, -2*sqrt(5)  + 10)) - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5)  + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5) + 10))  - 5/64*720^(2/5)*sqrt(5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5) + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*cos(2/5*sqrt(2)*pi)*cos(1/2*arctan2(0, -2*sqrt(5)  + 10)) - 25/256*720^(2/5)*sqrt(abs(-2*sqrt(5) + 10))*sin(2/5*sqrt(2)*pi)*sin(1/2*arctan2(0, -2*sqrt(5)  + 10)) + x*y + 5/56*720^(2/5)*sqrt(5)*sin(2/5*sqrt(2)*pi) - 5/56*720^(2/5)*sin(2/5*sqrt(2)*pi)
sage: B = 7.5
sage: G = implicit_plot(F, (x, -B, B), (y, -B, B), gridlines=True)
sage: G.show(figsize=5)

Implicit plot of degree 7 function of x and y

This has many connected components (on the finite plane), the square root of two is just to match another conventions, you could ignore this and any number-theoretical stuff, just think about the sort of not low degree polynomial in two variables. Cannot upload the plot yet.