Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

In sagemath, why can't i take the maximum degree from a differentiated monomial?

For instance,

X = diff(s[64] , s_128[28]) print (X.degree())

I am using e booleanpolynomial ring and all defined. It says the error : degree() takes exactly one argument (0 given). The degree() function works properly for other function unrelated to the diff() function such as s[64].degree().

In sagemath, why can't i take the maximum degree from a differentiated monomial?

For instance, The code :

from sage.crypto.boolean_function import BooleanFunction from random import randint import random import numpy from sage.all import *

R.<s0, s1,="" s2,="" s3,="" s4,="" s5,="" s6,="" s7,="" s8,="" s9,="" s10,="" s11,="" s12,="" s13,="" s14,="" s15,="" s16,="" s17,="" s18,="" s19,="" s20,="" s21,="" s22,="" s23,="" s24,="" s25,="" s26,="" s27,="" s28,="" s29,="" s30,="" s31,="" s32,="" s33,="" s34,="" s35,="" s36,="" s37,="" s38,="" s39,="" s40,="" s41,="" s42,="" s43,="" s44,="" s45,="" s46,="" s47,="" s48,="" s49,="" s50,="" s51,="" s52,="" s53,="" s54,="" s55,="" s56,="" s57,="" s58,="" s59,="" s60,="" s61,="" s62,="" s63,="" s64,="" s65,="" s66,="" s67,="" s68,="" s69,="" s70,="" s71,="" s72,="" s73,="" s74,="" s75,="" s76,="" s77,="" s78,="" s79,="" s80,="" s81,="" s82,="" s83,="" s84,="" s85,="" s86,="" s87,s88,="" s89,="" s90,="" s91,="" s92,="" s93,="" s94,="" s95,="" s96,="" s97,="" s98,="" s99,="" s100,="" s101,="" s102,="" s103,="" s104,="" s105,="" s106,="" s107,="" s108,="" s109,="" s110,="" s111,="" s112,="" s113,="" s114,="" s115,="" s116,="" s117,="" s118,="" s119,="" s120,="" s121,="" s122,="" s123,="" s124,="" s125,="" s126,="" s127,="" k0,="" k1,="" k2,="" k3,="" k4,="" k5,="" k6,="" k7,="" k8,="" k9,="" k10,="" k11,="" k12,="" k13,="" k14,="" k15,="" k16,="" k17,="" k18,="" k19,="" k20,="" k21,="" k22,="" k23,="" k24,="" k25,="" k26,="" k27,="" k28,="" k29,="" k30,="" k31,="" k32,="" k33,="" k34,="" k35,="" k36,="" k37,="" k38,="" k39,="" k40,="" k41,="" k42,="" k43,="" k44,="" k45,="" k46,="" k47,="" k48,="" k49,="" k50,="" k51,="" k52,="" k53,="" k54,="" k55,="" k56,="" k57,="" k58,="" k59,="" k60,="" k61,="" k62,="" k63,="" k64,="" k65,="" k66,="" k67,="" k68,="" k69,="" k70,="" k71,="" k72,="" k73,="" k74,="" k75,="" k76,="" k77,="" k78,="" k79,="" k80,="" k81,="" k82,="" k83,="" k84,="" k85,="" k86,="" k87,="" k88,="" k89,="" k90,="" k91,="" k92,="" k93,="" k94,="" k95,="" k96,="" k97,="" k98,="" k99,="" k100,="" k101,="" k102,="" k103,="" k104,="" k105,="" k106,="" k107,="" k108,="" k109,="" k110,="" k111,="" k112,="" k113,="" k114,="" k115,="" k116,="" k117,="" k118,="" k119,="" k120,="" k121,="" k122,="" k123,="" k124,="" k125,="" k126,="" k127=""> = BooleanPolynomialRing() R = BooleanPolynomialRing(names=('s0', 's1', 's2', 's3', 's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14', 's15', 's16', 's17', 's18', 's19', 's20', 's21', 's22', 's23', 's24', 's25', 's26', 's27', 's28', 's29', 's30', 's31', 's32', 's33', 's34', 's35', 's36', 's37', 's38', 's39', 's40', 's41', 's42', 's43', 's44', 's45', 's46', 's47', 's48', 's49', 's50', 's51', 's52', 's53', 's54', 's55', 's56', 's57', 's58', 's59', 's60', 's61', 's62', 's63', 's64', 's65', 's66', 's67', 's68', 's69', 's70', 's71', 's72', 's73', 's74', 's75', 's76', 's77', 's78', 's79', 's80', 's81', 's82', 's83', 's84', 's85', 's86', 's87', 's88', 's89', 's90', 's91', 's92', 's93', 's94', 's95', 's96', 's97', 's98', 's99', 's100', 's101', 's102', 's103', 's104', 's105', 's106', 's107', 's108', 's109', 's110', 's111', 's112', 's113', 's114', 's115', 's116', 's117', 's118', 's119', 's120', 's121', 's122', 's123', 's124', 's125', 's126', 's127', 'k0', 'k1', 'k2', 'k3', 'k4', 'k5', 'k6', 'k7', 'k8', 'k9', 'k10', 'k11', 'k12', 'k13', 'k14', 'k15', 'k16', 'k17', 'k18', 'k19', 'k20', 'k21', 'k22', 'k23', 'k24', 'k25', 'k26', 'k27', 'k28', 'k29', 'k30', 'k31', 'k32', 'k33', 'k34', 'k35', 'k36', 'k37', 'k38', 'k39', 'k40', 'k41', 'k42', 'k43', 'k44', 'k45', 'k46', 'k47', 'k48', 'k49', 'k50', 'k51', 'k52', 'k53', 'k54', 'k55', 'k56', 'k57', 'k58', 'k59', 'k60', 'k61', 'k62', 'k63', 'k64', 'k65', 'k66', 'k67', 'k68', 'k69', 'k70', 'k71', 'k72', 'k73', 'k74', 'k75', 'k76', 'k77', 'k78', 'k79', 'k80', 'k81', 'k82', 'k83', 'k84', 'k85', 'k86', 'k87', 'k88', 'k89', 'k90', 'k91', 'k92', 'k93', 'k94', 'k95', 'k96', 'k97', 'k98', 'k99', 'k100', 'k101', 'k102', 'k103', 'k104', 'k105', 'k106', 'k107', 'k108', 'k109', 'k110', 'k111', 'k112', 'k113', 'k114', 'k115', 'k116', 'k117', 'k118', 'k119', 'k120', 'k121', 'k122', 'k123', 'k124', 'k125', 'k126', 'k127'))

R.inject_variables()

S = list(R.gens()[0:128])

S_128 = list(R.gens()[0:128])

K = list(R.gens()[128:256])

eqList = ["eq"]

for i in range(128): feedback = S[0] + S[47] + S[70]*S[85] + S[91] + 1 + K[i%128] for j in range(127): S[j] = S[j+1] S[127] = feedback

print(S[64]) X = diff(s[64] , s_128[28]) diff(S[64], S_128[21]) print('\n') print(X) print('\n') print(X.degree(S_128)) print('\n') print (X.degree())('--------------------------------------------------------------------------------------------------------------')

I am using e booleanpolynomial ring and all defined. It says the error : degree() takes exactly one argument (0 given). The degree() function works properly for other function unrelated to the diff() function such as s[64].degree().