Let $B_n$ be the Boolean lattice of a set with $n$ elements. Is there a quick method via Sage to obtain all subposets $P$ of $B_n$ containing the empty set and having the property that with x in $P$ also the complement of the set x is in P and such that with x and y in P also the union of x and y is in P if x and y are disjoint?
Thanks for any help