Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Polynomial becoming FractionFieldElement?

I have a polynomial f(x,y) over the finite field \F_{p^2}, and I tried to set the first variable to a constant and then divide it by (x - one of the roots) so I could use .roots() to find its roots. The problem is that, when the following lines

f = Phi(x=current[mu]).univariate_polynomial()/(y - previous[mu])

roots = f.roots(multiplicities=False)

I get the following error:

AttributeError: 'sage.rings.fraction_field_element.FractionFieldElement' object has no attribute 'roots'

I set it up to print f before the line that causes the crash, and the value of f was a reasonable y^2 + y - 8. I don't know why this is being implicitly converted to a polynomial fraction, but I need to find its roots as a polynomial over a finite field.

Polynomial becoming FractionFieldElement?

I have a polynomial f(x,y) over the finite field \F_{p^2}, and I tried to set the first variable to a constant and then divide it by (x - one of the roots) so I could use .roots() to find its other roots. The problem is that, when the following lines

f = Phi(x=current[mu]).univariate_polynomial()/(y - previous[mu])

roots = f.roots(multiplicities=False)

I get the following error:

AttributeError: 'sage.rings.fraction_field_element.FractionFieldElement' object has no attribute 'roots'

I set it up to print f before the line that causes the crash, and the value of f was a reasonable y^2 + y - 8. I don't know why this is being implicitly converted to a polynomial fraction, but I need to find its roots as a polynomial over a finite field.

Polynomial becoming FractionFieldElement?

I have a polynomial f(x,y) over the finite field \F_{p^2}, and I tried to set the first variable to a constant and then divide it by (x - one of the roots) so I could use .roots() to find its other roots. The problem is that, when running the following lines

f = Phi(x=current[mu]).univariate_polynomial()/(y - previous[mu])

roots = f.roots(multiplicities=False)

I get the following error:

AttributeError: 'sage.rings.fraction_field_element.FractionFieldElement' object has no attribute 'roots'

I set it up to print f before the line that causes the crash, and the value of f was a reasonable y^2 + y - 8. I don't know why this is being implicitly converted to a polynomial fraction, but I need to find its roots as a polynomial over a finite field.

Polynomial becoming FractionFieldElement?

I have a polynomial f(x,y) over the finite field \F_{p^2}, and I tried to set the first variable to a constant and then divide it by (x - one of the roots) so I could use .roots() to find its other roots. The problem is that, when running the following lineslines,

f = Phi(x=current[mu]).univariate_polynomial()/(y - previous[mu])

roots = f.roots(multiplicities=False)

I get the following error:

AttributeError: 'sage.rings.fraction_field_element.FractionFieldElement' object has no attribute 'roots'

I set it up to print f before the line that causes the crash, and the value of f was a reasonable y^2 + y - 8. I don't know why this is being implicitly converted to a polynomial fraction, but I need to find its roots as a polynomial over a finite field.

Polynomial becoming FractionFieldElement?

I have a polynomial f(x,y) Phi(x,y) over the finite field \F_{p^2}, and I tried to set the first variable to a constant and then divide it by (x - one of the roots) so I could use .roots() to find its other roots. The problem is that, when running the following lines,

f = Phi(x=current[mu]).univariate_polynomial()/(y - previous[mu])

roots = f.roots(multiplicities=False)

I get the following error:

AttributeError: 'sage.rings.fraction_field_element.FractionFieldElement' object has no attribute 'roots'

I set it up to print f before the line that causes the crash, and the value of f was a reasonable y^2 + y - 8. I don't know why this is being implicitly converted to a polynomial fraction, but I need to find its roots as a polynomial over a finite field.