Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Obtaining a poset of plane paritions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to the the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the poset of all plane partitions that are contained in a given plane partition p ?

Obtaining a poset of plane paritions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to the obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the poset of all plane partitions that are contained in a given plane partition p ?

Obtaining a poset of plane paritions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

Obtaining a poset of plane paritions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

(see https://en.wikipedia.org/wiki/Plane_partition )

Obtaining a poset of plane paritions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

(see https://en.wikipedia.org/wiki/Plane_partition )

Thank you for any help.

click to hide/show revision 6
None

Obtaining a poset of plane paritions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

(see https://en.wikipedia.org/wiki/Plane_partition )

Thank you for any help.

Obtaining a poset of plane paritions partitions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

(see https://en.wikipedia.org/wiki/Plane_partition )

edit: It would also be interesting how to obtain the poset of plane partitions of $m$ for a given $m \leq n$ as one can do the same for the Young lattice in Sage via P=posets.YoungsLattice(5).

Thank you for any help.

click to hide/show revision 8
retagged

Obtaining a poset of plane partitions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

(see https://en.wikipedia.org/wiki/Plane_partition )

edit: It would also be interesting how to obtain the poset of plane partitions of $m$ for a given $m \leq n$ as one can do the same for the Young lattice in Sage via P=posets.YoungsLattice(5).

Thank you for any help.

click to hide/show revision 9
retagged

Obtaining a poset of plane partitions via Sage

In Sage there is the command YoungsLatticePrincipalOrderIdeal(p) to obtain the lattice of partitions contained in p (via Ferrer diagrams) with maximal element p.

My question is whether there is the same command for obtaining via Sage the finite poset of all plane partitions that are contained in a given plane partition p ?

(see https://en.wikipedia.org/wiki/Plane_partition )

edit: It would also be interesting how to obtain the poset of plane partitions of $m$ for a given $m \leq n$ as one can do the same for the Young lattice in Sage via P=posets.YoungsLattice(5).

Thank you for any help.