Ask Your Question

Revision history [back]

How to radicalize $fraction * I \; , number* \{N}^{\pm \frac{1}{2}} $

There seem to be 2 cases which would help me to complete some sage code

1) Complex Fractions $fraction * I \ $ like $$ 4.4747038862752024491936821935697961325*I $$ so that one obtains the fraction $$\frac{3344161}{747348} I$$

2) Numbers of the form $number* {N}^{\pm \frac{1}{2}} $ like , $$\frac{3623680665059}{\sqrt{38}}, 179398994850 \sqrt{38} $$ where one does not know $N=38$ in advance.

Using the function .canonicalize_radical() , I get the error.

PARI/GP ERROR: * at top-level: sage[1296]=canonicalize_radical(sage[1264]) ^-------------------------------- ** not a function in function call

I hope there is a solution in sage

How to radicalize $fraction * I \; , number* \{N}^{\pm \frac{1}{2}} $

There seem to be 2 cases which would help me to complete some sage code

1) Complex Fractions $fraction * I \ $ like $$ 4.4747038862752024491936821935697961325*I $$ so that one obtains the fraction $$\frac{3344161}{747348} I$$

2) Numbers of the form $number* {N}^{\pm \frac{1}{2}} $ like , $$\frac{3623680665059}{\sqrt{38}}, 179398994850 \sqrt{38} $$ where one does not know $N=38$ in advance.

Using the function .canonicalize_radical() , I get the error.

PARI/GP ERROR: * at top-level: sage[1296]=canonicalize_radical(sage[1264]) ^-------------------------------- ** not a function in function call

I hope there is a solution in sage

How to radicalize $fraction * I \; , ; number* \{N}^{\pm \frac{1}{2}} $

There seem to be 2 cases which would help me to complete some sage code

1) Complex Fractions $fraction * I \ $ like $$ 4.4747038862752024491936821935697961325*I $$ so that one obtains the fraction $$\frac{3344161}{747348} I$$

2) Numbers of the form $number* {N}^{\pm \frac{1}{2}} $ like , $$\frac{3623680665059}{\sqrt{38}}, 179398994850 \sqrt{38} $$ where one does not know $N=38$ in advance.

Using the function .canonicalize_radical() , I get the error.

PARI/GP ERROR: * at top-level: sage[1296]=canonicalize_radical(sage[1264]) ^-------------------------------- ** not a function in function call

I hope there is a solution in sage

How to radicalize $fraction * I I$ ; number* $number* \{N}^{\pm \frac{1}{2}} $\frac{1}{2}}$

There seem to be 2 cases which would help me to complete some sage code

1) Complex Fractions $fraction * I \ $ like $$ 4.4747038862752024491936821935697961325*I $$ so that one obtains the fraction $$\frac{3344161}{747348} I$$

2) Numbers of the form $number* {N}^{\pm \frac{1}{2}} $ like , $$\frac{3623680665059}{\sqrt{38}}, 179398994850 \sqrt{38} $$ where one does not know $N=38$ in advance.

Using the function .canonicalize_radical() , I get the error.

PARI/GP ERROR: * at top-level: sage[1296]=canonicalize_radical(sage[1264]) ^-------------------------------- ** not a function in function call

I hope there is a solution in sage

How to radicalize $fraction * I$ ; $number* \{N}^{\pm $number * N^{\pm \frac{1}{2}}$

There seem to be 2 cases which would help me to complete some sage code Sage code.

  1. 1) Complex Fractions $fraction fractions fraction * I \ $ like I like $$ 4.4747038862752024491936821935697961325*I $$ so that one obtains the fraction $$\frac{3344161}{747348} I$$

  2. 2) Numbers of the form $number* {N}^{\pm \frac{1}{2}} $ like , number * N^(±1/2) like $$\frac{3623680665059}{\sqrt{38}}, 179398994850 \sqrt{38} $$ \sqrt{38}$$ where one does not know $N=38$ $N = 38$ in advance.

Using the function .canonicalize_radical() .canonicalize_radical(), I get the error.error:

PARI/GP ERROR:
 * ***   at top-level: sage[1296]=canonicalize_radical(sage[1264])
  ***                            ^--------------------------------
  ** ***   not a function in function call

call

I hope there is a solution in sage Sage.

How to radicalize $fraction * I$ ; $number * N^{\pm \frac{1}{2}}$

There seem to be 2 cases which would help me to complete some Sage code.

  1. Complex fractions fraction * I like $$ 4.4747038862752024491936821935697961325*I $$ so that one obtains the fraction $$\frac{3344161}{747348} I$$

  2. Numbers of the form number * N^(±1/2) like $$\frac{3623680665059}{\sqrt{38}}, 179398994850 \sqrt{38}$$ where one does not know $N = 38$ in advance.

Using the function .canonicalize_radical(), I get the error:

PARI/GP ERROR:
***   at top-level: sage[1296]=canonicalize_radical(sage[1264])
***                            ^--------------------------------
***   not a function in function call

I hope there is a solution in Sage.