Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

some output from integrate using giac gives Malformed expression

Using sagemath 9.3 on Linux.

Some calls to integrate using giac as algorithm do not get assigned to the variable on the LHS. i.e. when doing anti=integrate(....), then typing anti gives NameError. This happens because giac return the result of integrate with strange warning mesagaes before, even thought the actual antiderivative is returned at the end. But It is not possible to capture this due to the error sagemath have parsing the output from giac.

There are many such cases. I will show one below.

When using giac directly, the result of integrate is assigned to the variable. The version of giac is Giac/Xcas 1.7 on Linux

>sage
┌────────────────────────────────────────────────────────────────────┐
│ SageMath version 9.3, Release Date: 2021-05-09                     │
│ Using Python 3.9.4. Type "help()" for help.                        │
└────────────────────────────────────────────────────────────────────┘
sage: var('x b')
(x, b)
sage: anti=integrate((-b*x+2)^(5/2)*x^(1/2),x, algorithm="giac")
---------------------------------------------------------------------------
SyntaxError                               Traceback (most recent call last)
/usr/lib/python3.9/site-packages/sage/interfaces/giac.py in _sage_(self, locals)
   1131             try:
-> 1132                 return symbolic_expression_from_string(result, lsymbols,
   1133                     accept_sequence=True)

/usr/lib/python3.9/site-packages/sage/calculus/calculus.py in symbolic_expression_from_string(s, syms, accept_sequence)
   2407                                     if isinstance(v,Function)})
-> 2408     return parse_func(s)
   2409 

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_sequence (build/cythonized/sage/misc/parser.c:5837)()
    549 
--> 550     cpdef parse_sequence(self, s):
    551         """

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_sequence (build/cythonized/sage/misc/parser.c:5724)()
    567         if tokens.next() != EOS:
--> 568             self.parse_error(tokens)
    569         if len(all) == 1 and isinstance(all, list):

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_error (build/cythonized/sage/misc/parser.c:10208)()
   1018     cdef parse_error(self, Tokenizer tokens, msg="Malformed expression"):
-> 1019         raise SyntaxError(msg, tokens.s, tokens.pos)
   1020 

SyntaxError: Malformed expression

During handling of the above exception, another exception occurred:

NotImplementedError                       Traceback (most recent call last)
<ipython-input-2-eb4066502734> in <module>
----> 1 anti=integrate((-b*x+Integer(2))**(Integer(5)/Integer(2))*x**(Integer(1)/Integer(2)),x, algorithm="giac")

/usr/lib/python3.9/site-packages/sage/misc/functional.py in integral(x, *args, **kwds)
    757     """
    758     if hasattr(x, 'integral'):
--> 759         return x.integral(*args, **kwds)
    760     else:
    761         from sage.symbolic.ring import SR

/usr/lib/python3.9/site-packages/sage/symbolic/expression.pyx in sage.symbolic.expression.Expression.integral (build/cythonized/sage/symbolic/expression.cpp:66867)()
  12645                     R = SR
  12646             return R(integral(f, v, a, b, **kwds))
> 12647         return integral(self, *args, **kwds)
  12648 
  12649     integrate = integral

/usr/lib/python3.9/site-packages/sage/symbolic/integration/integral.py in integrate(expression, v, a, b, algorithm, hold)
    988         if not integrator:
    989             raise ValueError("Unknown algorithm: %s" % algorithm)
--> 990         return integrator(expression, v, a, b)
    991     if a is None:
    992         return indefinite_integral(expression, v, hold=hold)

/usr/lib/python3.9/site-packages/sage/symbolic/integration/external.py in giac_integrator(expression, v, a, b)
    446         return expression.integrate(v, a, b, hold=True)
    447     else:
--> 448         return result._sage_()

/usr/lib/python3.9/site-packages/sage/interfaces/giac.py in _sage_(self, locals)
   1134 
   1135             except Exception:
-> 1136                 raise NotImplementedError("Unable to parse Giac output: %s" % result)
   1137         else:
   1138             return [entry.sage() for entry in self]

NotImplementedError: Unable to parse Giac output: Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-17.5134260082,53.112478131]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-62.3026123089,89.629912049]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-94.177692275,55.0343274642]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-47.5119365202,16.0204098616]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-54.7543625063,66.0382199469]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-6.07356301835,51.8441526662]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-2.28782047657,4.66774101928]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-10.7897139532,38.2197840363]

1/b*(2*b^3*abs(b)/b^2*(2*(((-90*b^11/1440/b^14*sqrt(-b*x+2)*sqrt(-b*x+2)+750*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)-2445*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)+4185*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-35/8/b^2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-12*b^2*abs(b)/b^2*(2*((12*b^5/144/b^7*sqrt(-b*x+2)*sqrt(-b*x+2)-78*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*x+2)+198*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-5/2/b/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-24*b*abs(b)/b^2/b*(2*(1/8*sqrt(-b*x+2)*sqrt(-b*x+2)-5/8)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)+6*b/4/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-16*abs(b)/b^2*(1/2*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-2*b/2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2)))))
sage: anti
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-66894d4540d1> in <module>
----> 1 anti

NameError: name 'anti' is not defined
sage:

You can see that giac actually solved this integral, but from sagemath, it is not possible to obtain the last result above due to the parsing errors.

Here are few more examples, where they all give same errors in sagemath

integrate((-b*x+2)^(5/2)/x^(3/2),x, algorithm="giac")
integrate((-b*x+2)^(5/2)/x^(5/2),x, algorithm="giac")

Since I run integration test for giac using sagemath, all these integrals now assigned as failed, even though using giac directly, the output is captured ok.

Is there a way to resolve this in sagemath or should giac clean its return result somehow to allow sagemath to process it correctly?

some output from integrate using giac gives Malformed expression

Using sagemath 9.3 on Linux.

Some calls to integrate using giac as algorithm do not get assigned to the variable on the LHS. i.e. when doing anti=integrate(....), then typing anti gives NameError. This happens because giac return the result of integrate with strange warning mesagaes before, even thought the actual antiderivative is returned at the end. But It is not possible to capture this due to the error sagemath have parsing the output from giac.

There are many such cases. I will show one below.

When using giac directly, the result of integrate is assigned to the variable. The version of giac is Giac/Xcas 1.7 on Linux

>sage
┌────────────────────────────────────────────────────────────────────┐
│ SageMath version 9.3, Release Date: 2021-05-09                     │
│ Using Python 3.9.4. Type "help()" for help.                        │
└────────────────────────────────────────────────────────────────────┘
sage: var('x b')
(x, b)
sage: anti=integrate((-b*x+2)^(5/2)*x^(1/2),x, algorithm="giac")
---------------------------------------------------------------------------
SyntaxError                               Traceback (most recent call last)
/usr/lib/python3.9/site-packages/sage/interfaces/giac.py in _sage_(self, locals)
   1131             try:
-> 1132                 return symbolic_expression_from_string(result, lsymbols,
   1133                     accept_sequence=True)

/usr/lib/python3.9/site-packages/sage/calculus/calculus.py in symbolic_expression_from_string(s, syms, accept_sequence)
   2407                                     if isinstance(v,Function)})
-> 2408     return parse_func(s)
   2409 

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_sequence (build/cythonized/sage/misc/parser.c:5837)()
    549 
--> 550     cpdef parse_sequence(self, s):
    551         """

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_sequence (build/cythonized/sage/misc/parser.c:5724)()
    567         if tokens.next() != EOS:
--> 568             self.parse_error(tokens)
    569         if len(all) == 1 and isinstance(all, list):

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_error (build/cythonized/sage/misc/parser.c:10208)()
   1018     cdef parse_error(self, Tokenizer tokens, msg="Malformed expression"):
-> 1019         raise SyntaxError(msg, tokens.s, tokens.pos)
   1020 

SyntaxError: Malformed expression

During handling of the above exception, another exception occurred:

NotImplementedError                       Traceback (most recent call last)
<ipython-input-2-eb4066502734> in <module>
----> 1 anti=integrate((-b*x+Integer(2))**(Integer(5)/Integer(2))*x**(Integer(1)/Integer(2)),x, algorithm="giac")

/usr/lib/python3.9/site-packages/sage/misc/functional.py in integral(x, *args, **kwds)
    757     """
    758     if hasattr(x, 'integral'):
--> 759         return x.integral(*args, **kwds)
    760     else:
    761         from sage.symbolic.ring import SR

/usr/lib/python3.9/site-packages/sage/symbolic/expression.pyx in sage.symbolic.expression.Expression.integral (build/cythonized/sage/symbolic/expression.cpp:66867)()
  12645                     R = SR
  12646             return R(integral(f, v, a, b, **kwds))
> 12647         return integral(self, *args, **kwds)
  12648 
  12649     integrate = integral

/usr/lib/python3.9/site-packages/sage/symbolic/integration/integral.py in integrate(expression, v, a, b, algorithm, hold)
    988         if not integrator:
    989             raise ValueError("Unknown algorithm: %s" % algorithm)
--> 990         return integrator(expression, v, a, b)
    991     if a is None:
    992         return indefinite_integral(expression, v, hold=hold)

/usr/lib/python3.9/site-packages/sage/symbolic/integration/external.py in giac_integrator(expression, v, a, b)
    446         return expression.integrate(v, a, b, hold=True)
    447     else:
--> 448         return result._sage_()

/usr/lib/python3.9/site-packages/sage/interfaces/giac.py in _sage_(self, locals)
   1134 
   1135             except Exception:
-> 1136                 raise NotImplementedError("Unable to parse Giac output: %s" % result)
   1137         else:
   1138             return [entry.sage() for entry in self]

NotImplementedError: Unable to parse Giac output: Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-17.5134260082,53.112478131]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-62.3026123089,89.629912049]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-94.177692275,55.0343274642]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-47.5119365202,16.0204098616]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-54.7543625063,66.0382199469]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-6.07356301835,51.8441526662]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-2.28782047657,4.66774101928]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-10.7897139532,38.2197840363]

1/b*(2*b^3*abs(b)/b^2*(2*(((-90*b^11/1440/b^14*sqrt(-b*x+2)*sqrt(-b*x+2)+750*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)-2445*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)+4185*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-35/8/b^2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-12*b^2*abs(b)/b^2*(2*((12*b^5/144/b^7*sqrt(-b*x+2)*sqrt(-b*x+2)-78*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*x+2)+198*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-5/2/b/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-24*b*abs(b)/b^2/b*(2*(1/8*sqrt(-b*x+2)*sqrt(-b*x+2)-5/8)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)+6*b/4/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-16*abs(b)/b^2*(1/2*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-2*b/2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2)))))
sage: anti
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-66894d4540d1> in <module>
----> 1 anti

NameError: name 'anti' is not defined
sage:

You can see that giac actually solved this integral, but from sagemath, it is not possible to obtain the last result above due to the parsing errors.

Here are few more examples, where they all give same errors in sagemath

integrate((-b*x+2)^(5/2)/x^(3/2),x, algorithm="giac")
integrate((-b*x+2)^(5/2)/x^(5/2),x, algorithm="giac")

Since I run integration test for giac using sagemath, all these integrals now assigned as failed, even though using giac directly, the output is captured ok.

Is there a way to resolve this in sagemath or should giac clean its return result somehow to allow sagemath to process it correctly?

Btw, this is not the only problem interfacing to giac, There are examples, where sagemath returns back the input (i.e. meaning the integrate did not evaluate), while when using giac directly, it does work (but gives warnings)

Here is an example

sage: var('x b a')
(x, b, a)
sage: anti=integrate(1/(a-I*a*x)^(3/4)/(a+I*a*x)^(9/4),x, algorithm="giac")
sage: anti
integrate(1/((I*a*x + a)^(9/4)*(-I*a*x + a)^(3/4)), x)

While in giac itself, it gives

13>> anti=integrate(1/(a-i*a*x)^(3/4)/(a+i*a*x)^(9/4),x)
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-95.2401873125,21.5252789878]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-26.2540012896,71.1075269701]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-11.5307277958,27.1490779156]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-6.14734174544,20.4610221288]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-47.4516566554,16.0424250476]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-15.6197261275,43.7366975551]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-66.7525112387,89.9395644632]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-50.7246053959,13.8581410125]

Evaluation time: 15.34
1/b*(2*b^3*abs(b)/b^2*(2*((((5040*b^19/100800/b^23*sqrt(-b*x+2)*sqrt(-b*x+2)-51660*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*x+2)+215460*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*x+2)-469350*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*x+2)+607950*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-63/8/b^3/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-12*b^2*abs(b)/b^2*(2*(((-90*b^11/1440/b^14*sqrt(-b*x+2)*sqrt(-b*x+2)+750*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)-2445*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)+4185*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-35/8/b^2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))+24*b*abs(b)/b^2*(2*((12*b^5/144/b^7*sqrt(-b*x+2)*sqrt(-b*x+2)-78*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*x+2)+198*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-5/2/b/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))+16*abs(b)/b^2/b*(2*(1/8*sqrt(-b*x+2)*sqrt(-b*x+2)-5/8)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)+6*b/4/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2)))))=(integrate(4/(2*i*a^3*((((-i)*a*x+a)^(1/4))^4-a)*(-(((-i)*a*x+a)^(1/4))^4+2*a)^(1/4)/a+i*a^3*(i*((((-i)*a*x+a)^(1/4))^4-a)/a)^2*(-(((-i)*a*x+a)^(1/4))^4+2*a)^(1/4)+(-i)*a^3*(-(((-i)*a*x+a)^(1/4))^4+2*a)^(1/4))/4*(-i)*a*(((-i)*a*x+a)^(1/4))^-3,x))
// Time 15.34
14>>

It looks like it is because giac generates these warning messages. Same as above example.

Because of this, many integrals show as failed when using sagemath with giac.

some output from integrate using giac gives Malformed expression

Using sagemath 9.3 on Linux.

Some calls to integrate using giac as algorithm do not get assigned to the variable on the LHS. i.e. when doing anti=integrate(....), then typing anti gives NameError. This happens because giac return the result of integrate with strange warning mesagaes before, even thought the actual antiderivative is returned at the end. But It is not possible to capture this due to the error sagemath have parsing the output from giac.

There are many such cases. I will show one below.

When using giac directly, the result of integrate is assigned to the variable. The version of giac is Giac/Xcas 1.7 on Linux

>sage
┌────────────────────────────────────────────────────────────────────┐
│ SageMath version 9.3, Release Date: 2021-05-09                     │
│ Using Python 3.9.4. Type "help()" for help.                        │
└────────────────────────────────────────────────────────────────────┘
sage: var('x b')
(x, b)
sage: anti=integrate((-b*x+2)^(5/2)*x^(1/2),x, algorithm="giac")
---------------------------------------------------------------------------
SyntaxError                               Traceback (most recent call last)
/usr/lib/python3.9/site-packages/sage/interfaces/giac.py in _sage_(self, locals)
   1131             try:
-> 1132                 return symbolic_expression_from_string(result, lsymbols,
   1133                     accept_sequence=True)

/usr/lib/python3.9/site-packages/sage/calculus/calculus.py in symbolic_expression_from_string(s, syms, accept_sequence)
   2407                                     if isinstance(v,Function)})
-> 2408     return parse_func(s)
   2409 

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_sequence (build/cythonized/sage/misc/parser.c:5837)()
    549 
--> 550     cpdef parse_sequence(self, s):
    551         """

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_sequence (build/cythonized/sage/misc/parser.c:5724)()
    567         if tokens.next() != EOS:
--> 568             self.parse_error(tokens)
    569         if len(all) == 1 and isinstance(all, list):

/usr/lib/python3.9/site-packages/sage/misc/parser.pyx in sage.misc.parser.Parser.parse_error (build/cythonized/sage/misc/parser.c:10208)()
   1018     cdef parse_error(self, Tokenizer tokens, msg="Malformed expression"):
-> 1019         raise SyntaxError(msg, tokens.s, tokens.pos)
   1020 

SyntaxError: Malformed expression

During handling of the above exception, another exception occurred:

NotImplementedError                       Traceback (most recent call last)
<ipython-input-2-eb4066502734> in <module>
----> 1 anti=integrate((-b*x+Integer(2))**(Integer(5)/Integer(2))*x**(Integer(1)/Integer(2)),x, algorithm="giac")

/usr/lib/python3.9/site-packages/sage/misc/functional.py in integral(x, *args, **kwds)
    757     """
    758     if hasattr(x, 'integral'):
--> 759         return x.integral(*args, **kwds)
    760     else:
    761         from sage.symbolic.ring import SR

/usr/lib/python3.9/site-packages/sage/symbolic/expression.pyx in sage.symbolic.expression.Expression.integral (build/cythonized/sage/symbolic/expression.cpp:66867)()
  12645                     R = SR
  12646             return R(integral(f, v, a, b, **kwds))
> 12647         return integral(self, *args, **kwds)
  12648 
  12649     integrate = integral

/usr/lib/python3.9/site-packages/sage/symbolic/integration/integral.py in integrate(expression, v, a, b, algorithm, hold)
    988         if not integrator:
    989             raise ValueError("Unknown algorithm: %s" % algorithm)
--> 990         return integrator(expression, v, a, b)
    991     if a is None:
    992         return indefinite_integral(expression, v, hold=hold)

/usr/lib/python3.9/site-packages/sage/symbolic/integration/external.py in giac_integrator(expression, v, a, b)
    446         return expression.integrate(v, a, b, hold=True)
    447     else:
--> 448         return result._sage_()

/usr/lib/python3.9/site-packages/sage/interfaces/giac.py in _sage_(self, locals)
   1134 
   1135             except Exception:
-> 1136                 raise NotImplementedError("Unable to parse Giac output: %s" % result)
   1137         else:
   1138             return [entry.sage() for entry in self]

NotImplementedError: Unable to parse Giac output: Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-17.5134260082,53.112478131]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-62.3026123089,89.629912049]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-94.177692275,55.0343274642]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-47.5119365202,16.0204098616]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-54.7543625063,66.0382199469]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-6.07356301835,51.8441526662]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-2.28782047657,4.66774101928]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-10.7897139532,38.2197840363]

1/b*(2*b^3*abs(b)/b^2*(2*(((-90*b^11/1440/b^14*sqrt(-b*x+2)*sqrt(-b*x+2)+750*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)-2445*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)+4185*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-35/8/b^2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-12*b^2*abs(b)/b^2*(2*((12*b^5/144/b^7*sqrt(-b*x+2)*sqrt(-b*x+2)-78*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*x+2)+198*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-5/2/b/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-24*b*abs(b)/b^2/b*(2*(1/8*sqrt(-b*x+2)*sqrt(-b*x+2)-5/8)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)+6*b/4/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-16*abs(b)/b^2*(1/2*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-2*b/2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2)))))
sage: anti
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-66894d4540d1> in <module>
----> 1 anti

NameError: name 'anti' is not defined
sage:

You can see that giac actually solved this integral, but from sagemath, it is not possible to obtain the last result above due to the parsing errors.

Here are few more examples, where they all give same errors in sagemath

integrate((-b*x+2)^(5/2)/x^(3/2),x, algorithm="giac")
integrate((-b*x+2)^(5/2)/x^(5/2),x, algorithm="giac")

Since I run integration test for giac using sagemath, all these integrals now assigned as failed, even though using giac directly, the output is captured ok.

Is there a way to resolve this in sagemath or should giac clean its return result somehow to allow sagemath to process it correctly?

Btw, this is not the only problem interfacing to giac, There are examples, where sagemath returns back the input (i.e. meaning the integrate did not evaluate), while when using giac directly, it does work (but gives warnings)

Here is an example

sage: var('x b a')
(x, b, a)
sage: anti=integrate(1/(a-I*a*x)^(3/4)/(a+I*a*x)^(9/4),x, algorithm="giac")
sage: anti
integrate(1/((I*a*x + a)^(9/4)*(-I*a*x + a)^(3/4)), x)

While in giac itself, it gives

13>> anti=integrate(1/(a-i*a*x)^(3/4)/(a+i*a*x)^(9/4),x)
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-95.2401873125,21.5252789878]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-26.2540012896,71.1075269701]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-11.5307277958,27.1490779156]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-6.14734174544,20.4610221288]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-47.4516566554,16.0424250476]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-15.6197261275,43.7366975551]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-66.7525112387,89.9395644632]
Warning, choosing root of [1,0,%%%{4,[1,1]%%%}+%%%{4,[1,0]%%%}+%%%{-4,[0,1]%%%}+%%%{-8,[0,0]%%%},0,%%%{6,[2,2]%%%}+%%%{4,[2,1]%%%}+%%%{6,[2,0]%%%}+%%%{-4,[1,2]%%%}+%%%{-28,[1,1]%%%}+%%%{-8,[1,0]%%%}+%%%{6,[0,2]%%%}+%%%{8,[0,1]%%%}+%%%{24,[0,0]%%%},0,%%%{4,[3,3]%%%}+%%%{-4,[3,2]%%%}+%%%{-4,[3,1]%%%}+%%%{4,[3,0]%%%}+%%%{4,[2,3]%%%}+%%%{-64,[2,2]%%%}+%%%{20,[2,1]%%%}+%%%{8,[2,0]%%%}+%%%{-4,[1,3]%%%}+%%%{-20,[1,2]%%%}+%%%{128,[1,1]%%%}+%%%{-16,[1,0]%%%}+%%%{-4,[0,3]%%%}+%%%{8,[0,2]%%%}+%%%{16,[0,1]%%%}+%%%{-32,[0,0]%%%},0,%%%{1,[4,4]%%%}+%%%{-4,[4,3]%%%}+%%%{6,[4,2]%%%}+%%%{-4,[4,1]%%%}+%%%{1,[4,0]%%%}+%%%{4,[3,4]%%%}+%%%{-12,[3,3]%%%}+%%%{20,[3,2]%%%}+%%%{-20,[3,1]%%%}+%%%{8,[3,0]%%%}+%%%{6,[2,4]%%%}+%%%{-20,[2,3]%%%}+%%%{46,[2,2]%%%}+%%%{-40,[2,1]%%%}+%%%{24,[2,0]%%%}+%%%{4,[1,4]%%%}+%%%{-20,[1,3]%%%}+%%%{40,[1,2]%%%}+%%%{-48,[1,1]%%%}+%%%{32,[1,0]%%%}+%%%{1,[0,4]%%%}+%%%{-8,[0,3]%%%}+%%%{24,[0,2]%%%}+%%%{-32,[0,1]%%%}+%%%{16,[0,0]%%%}] at parameters values [-50.7246053959,13.8581410125]

Evaluation time: 15.34
1/b*(2*b^3*abs(b)/b^2*(2*((((5040*b^19/100800/b^23*sqrt(-b*x+2)*sqrt(-b*x+2)-51660*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*x+2)+215460*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*x+2)-469350*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*x+2)+607950*b^19/100800/b^23)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-63/8/b^3/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))-12*b^2*abs(b)/b^2*(2*(((-90*b^11/1440/b^14*sqrt(-b*x+2)*sqrt(-b*x+2)+750*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)-2445*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*x+2)+4185*b^11/1440/b^14)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-35/8/b^2/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))+24*b*abs(b)/b^2*(2*((12*b^5/144/b^7*sqrt(-b*x+2)*sqrt(-b*x+2)-78*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*x+2)+198*b^5/144/b^7)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)-5/2/b/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2))))+16*abs(b)/b^2/b*(2*(1/8*sqrt(-b*x+2)*sqrt(-b*x+2)-5/8)*sqrt(-b*x+2)*sqrt(-b*(-b*x+2)+2*b)+6*b/4/sqrt(-b)*ln(abs(sqrt(-b*(-b*x+2)+2*b)-sqrt(-b)*sqrt(-b*x+2)))))=(integrate(4/(2*i*a^3*((((-i)*a*x+a)^(1/4))^4-a)*(-(((-i)*a*x+a)^(1/4))^4+2*a)^(1/4)/a+i*a^3*(i*((((-i)*a*x+a)^(1/4))^4-a)/a)^2*(-(((-i)*a*x+a)^(1/4))^4+2*a)^(1/4)+(-i)*a^3*(-(((-i)*a*x+a)^(1/4))^4+2*a)^(1/4))/4*(-i)*a*(((-i)*a*x+a)^(1/4))^-3,x))
// Time 15.34
14>>

It looks like it is because giac generates these warning messages. Same as above example.

Because of this, many integrals show as failed when using sagemath with giac.giac.

Is there a way to configure giac from inside sagemath may be to turn off these warnings? May be if there is, this will make all these integrals now work.

I do not know giac well, and do not even know where to ask about giac itself.