Hi there. I am trying to evaluate the tangent vector at a specific value of the affine parameter. I have tried everything from https://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/integrated_curve.html but it raises an error i can't find a solution to.
v0 = initial_vector(r0, al=1,b=1, ph0=0, inward=True)
geod = M.integrated_geodesic(g, (s, 0, 500), v0, across_charts=True)
sol = geod.solve_across_charts(step=0.01,method='odeint',parameters_values={a:1,q:1},
solution_key='sol',verbose=True)
interp = geod.interpolate(solution_key='sol',
interpolation_key='interp 1', verbose=True)
geodesics = geod
sage:Performing numerical integration with method 'ode'.
Integration will take place on the whole manifold domain.
Integration successful.
Performing cubic spline interpolation by default...
Interpolation completed and associated with the key 'interp 1' (if this key already referred to a former interpolation, such an interpolation was erased).
where using :
v = geod.tangent_vector_eval_at(200, verbose=True)
raises :
Evaluating tangent vector components from the interpolation associated with the key 'interp 1' by default...
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-60-276d62a6acbd> in <module>
----> 1 v2 = geod.tangent_vector_eval_at(Integer(200), verbose=True)
/opt/sagemath-9.2/local/lib/python3.7/site-packages/sage/manifolds/differentiable/integrated_curve.py in tangent_vector_eval_at(self, t, interpolation_key, verbose)
2275 # partial test, in case future interpolation objects do not
2276 # contain lists of instances of the Spline class
-> 2277 raise TypeError("unexpected type of interpolation object")
2278
2279 interpolated_coordinates=[coordinate_curve_spline(t)
TypeError: unexpected type of interpolation object