Does there exists any triple $(A,B,C)$ of $n\times n$ matrices with integer entries which satisfies $A^k+B^k=C^k$ for at least one $k\geq3$? Here $n,k$ are given to us, that is, we can choose them according to our convenience.
| 1 | initial version | |
Does there exists any triple $(A,B,C)$ of $n\times n$ matrices with integer entries which satisfies $A^k+B^k=C^k$ for at least one $k\geq3$? Here $n,k$ are given to us, that is, we can choose them according to our convenience.
Does there exists any triple $(A,B,C)$ of $n\times n$ $n\geq3$ matrices with integer entries which satisfies $A^k+B^k=C^k$ for at least one $k\geq3$? Here $n,k$ are given to us, that is, we can choose them according to our convenience.
Does there exists any triple $(A,B,C)$ of $n\times n$ $n\geq3$ ($n\geq3$) matrices with integer entries which satisfies $A^k+B^k=C^k$ for at least one $k\geq3$? Here $n,k$ are given to us, that is, we can choose them according to our convenience.
Does there exists any triple $(A,B,C)$ of $n\times n$ ($n\geq3$) matrices with integer entries which satisfies $A^k+B^k=C^k$ for at least one $k\geq3$? Here $n,k$ are given to us, that is, we can choose them according to our convenience.
Does there exists any triple $(A,B,C)$ of $n\times n$ ($n\geq3$) matrices with integer entries which satisfies $A^k+B^k=C^k$ for at least one $k\geq3$? Here $n,k$ are given to us, that is, we can choose them according to our convenience.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.