My name is Alberico Lepore and I am an aspiring self-taught amateur and for about six years I have been looking for factorization in computationally acceptable times.
I have come to the point of verifying that resolving the type of systems listed below resolves the factorization.
Here you will find my work:
https://www.linkedin.com/feed/update/urn:li:ugcPost:6777160628965535744/
or
https://github.com/Piunosei/gerva_factorization/blob/main/Transformation-of-the-factorization-problem-into-a-problem-of-solving-a-non-linear-system%20(5).pdf
Is written:
(*) as it is possible to establish the range of log_2 (x) and log_2 (y)
My problem is to solve the resulting nonlinear system.
UPDATE1:
In practice, this non-linear system must be resolved all small variables belong to be acceptable as a function of the number of variables
the number of Z
all big variables is
2 belong to N
If N = p * IntegerPart [log_2 (y)] + 2 * IntegerPart [log_2 (x)] + 4
where q and p + q = 8 * x + 4 = p + q and then q-p = 4 * y-2 = q-pthen
p = (4x+1-2(y-1))
q = (4x+3+2(y-1))
let's study the case
x is even and y is odd
Examples N=8979
(x+1+1)/2 is even then a = 1-(x+1+1)/2
(x+1+1)/2 is even odd a = (x+1+1)/2
(|a|+1)/2 is even then b = 1-(|a|+1)/2
(|a|+1)/2 is even odd b = (|a|+1)/2
(|b|+1)/2 is even then c = 1-(|b|+1)/2
(|b|+1)/2 is even odd c = (|b|+1)/2
(|c|+1)/2 is even then -1 = 1-(|c|+1)/2
(|c|+1)/2 is even odd -1 = (|c|+1)/2
then
16 <= x <= 30
S>D
D>C
C>B
B>A
A>M
and
(y+1)/2 is even then v = 1-(y+1)/2
(y+1)/2 is even odd v = (y+1)/2
(|v|+1)/2 is even then u = 1-(|v|+1)/2
(|v|+1)/2 is even odd u = (|v|+1)/2
(|u|+1)/2 is even then -1 = 1-(|u|+1)/2
(|u|+1)/2 is even odd -1 = (|u|+1)/2
then
9 <= y <= 15
S>T
T>U
U>V
V>(3*N-1)/8
then this system will have a single solution
var('x var('N p q x y M a b c d A B C D t u v S T U V')
eq0 = N-8979 == 0
eq1 = 3*(((2*3367-3*y+1)/24)+3*x*(x+1)/2)+1-V 3*(((2*(3*N-1)/8-3*y+1)/24)+3*x*(x+1)/2)+1-V == 0
eq2 = -3367+3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2 -(3*N-1)/8+3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2 == 0
eq3 = 3*(((2*V-3*v+1)/24)+3*x*(x+1)/2)+1-U == 0
eq4 = V+3*v*(v-1)/2-12*x*(x+1)/2-1 == 0
eq5 = 3*(((2*U-3*u+1)/24)+3*x*(x+1)/2)+1-T == 0
eq6 = U+3*u*(u-1)/2-12*x*(x+1)/2-1 == 0
eq7 = 3*(((2*T-3*t+1)/24)+3*x*(x+1)/2)+1-S 3*(((2*T+3+1)/24)+3*x*(x+1)/2)+1-S == 0
eq8 = T+3*t*(t-1)/2-12*x*(x+1)/2-1 T+3-12*x*(x+1)/2-1 == 0
eq9 = 3*(((2*S-3*1+1)/24)+3*x*(x+1)/2)+1-S == 0
eq10 = v*(v-1)/2 -(y-1)*(y+1)/8 == 0
eq11 = u*(u-1)/2 -(v-1)*(v+1)/8 == 0
eq12 = t*(t-1)/2 1 -(u-1)*(u+1)/8 == 0
eq13 = a*(a-1)/2 -(x+1-1)*(x+1+1)/8 == 0
eq14 = b*(b-1)/2 -(a-1)*(a+1)/8 == 0
eq15 = c*(c-1)/2 -(b-1)*(b+1)/8 == 0
eq16 = d*(d-1)/2 1 -(c-1)*(c+1)/8 == 0
eq18 = -M+9*((2*3367 -M+9*((2*(3*N-1)/8 - 3*y + 1)/24+(y-1)*(y+1)/8)+1 == 0
eq19 = 3*((2*M - 3*(x+1) + 1)/24 + (3*x*(x + 1))/2) + 1 - A == 0
eq20 = -M + (3*x*(x + 1))/2 - (3*x*(x + 1))/2 + ((3*x + 1)*(3*x + 2))/2 == 0
eq21 = 3*((2*A - 3*a + 1)/24 + (3*x*(x + 1))/2) + 1 - B == 0
eq22 = A + (3*a*(a - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq23 = 3*((2*B - 3*b + 1)/24 + (3*x*(x + 1))/2) + 1 - C == 0
eq24 = B + (3*b*(b - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq25 = 3*((2*C - 3*c + 1)/24 + (3*x*(x + 1))/2) + 1 - D == 0
eq26 = C + (3*c*(c - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq26 = 3*((2*D - 3*d + 3 + 1)/24 + (3*x*(x + 1))/2) + 1 - S == 0
eq27 = D + (3*d*(d - 3 - (12*x*(x + 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq28 = 3*((2*S - 3*1 + 1)/24 + (3*x*(x + 1))/2) + 1 - S == 0
eq29 = p - (4*x+1-2*(y-1)) == 0
eq30 = q - (4*x+3+2*(y-1)) == 0
solutions = solve([eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,eq15,eq16,eq18,eq19,eq20,eq21,eq22,eq23,eq24,eq25,eq26,eq27,eq28],x,y,M,a,b,c,d,A,B,C,D,t,u,v,S,T,U,V)
sol0 = solutions[0]
print(sol0[0])
print(sol0[1])
print(sol0[2])
print(sol0[3])
print(sol0[4])
print(sol0[5])
print(sol0[6])
print(sol0[7])
print(sol0[8])
print(sol0[9])
print(sol0[10])
print(sol0[11])
print(sol0[12])
print(sol0[13])
print(sol0[14])
print(sol0[15])
print(sol0[16])
print(sol0[17])
solve([eq0,eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,eq15,eq16,eq18,eq19,eq20,eq21,eq22,eq23,eq24,eq25,eq26,eq27,eq28,eq29,eq30],N,p,q,x,y,M,a,b,c,A,B,C,D,u,v,S,T,U,V)
sol = solutions
print(sol)
OUTPUT
(x, (N, p, q, x, y, M, a, b, c, d, A, B, C, D, t, u, v, S, T, U, V)
[
[N == 8979, p == 73, q == 123, x == 24
24, y == 13
13, M == 2701
2701, a == 13
13, b == 7
7, c == -3
d == -1
-3, A == 3367
3367, B == 3538
3538, C == 3583
3583, D == 3598
t == -1
3598, u == -3
-3, v == 7
7, S == 3601
3601, T == 3598
3598, U == 3583
3583, V == 3538
3538]
]
UPDATE2;
I think I have simplified the system
var('x y a b c d t u v S T U V')
eq1 = 3*(((2*3367-3*y+1)/24)+3*x*(x+1)/2)+1-V == 0
eq2 = -3367+3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2 == 0
eq3 = 3*(((2*V-3*v+1)/24)+3*x*(x+1)/2)+1-U == 0
eq4 = V+3*v*(v-1)/2-12*x*(x+1)/2-1 == 0
eq5 = 3*(((2*U-3*u+1)/24)+3*x*(x+1)/2)+1-T == 0
eq6 = U+3*u*(u-1)/2-12*x*(x+1)/2-1 == 0
eq7 = 3*(((2*T-3*t+1)/24)+3*x*(x+1)/2)+1-S == 0
eq8 = T+3*t*(t-1)/2-12*x*(x+1)/2-1 == 0
eq9 = 3*(((2*S-3*1+1)/24)+3*x*(x+1)/2)+1-S == 0
eq10 = v*(v-1)/2 -(y-1)*(y+1)/8 == 0
eq11 = u*(u-1)/2 -(v-1)*(v+1)/8 == 0
eq12 = t*(t-1)/2 -(u-1)*(u+1)/8 == 0
eq13 = a*(a-1)/2 -(x+1-1)*(x+1+1)/8 == 0
eq14 = b*(b-1)/2 -(a-1)*(a+1)/8 == 0
eq15 = c*(c-1)/2 -(b-1)*(b+1)/8 == 0
eq16 = d*(d-1)/2 -(c-1)*(c+1)/8 == 0
eq19 = d+1 == 0
eq20 = t+1 == 0
solutions = solve([eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,eq15,eq16,eq19,eq20],x,y,a,b,c,d,t,u,v,S,T,U,V)
sol0 = solutions[0]
print(sol0[0])
print(sol0[1])
print(sol0[2])
print(sol0[3])
print(sol0[4])
print(sol0[5])
print(sol0[6])
print(sol0[7])
print(sol0[8])
print(sol0[9])
print(sol0[10])
print(sol0[11])
print(sol0[12])
OUTPUT
(x, y, M, a, b, c, d, t, u, v, S, T, U, V, X)
x == 24
y == 13
a == 13
b == 7
c == -3
d == -1
t == -1
u == -3
v == 7
S == 3601
T == 3598
U == 3583
V == 3538
UPDATE3:
I reduced the system again
With my computer (a bit old) it takes 8 minutes Will you kindly help me to solve with N = 1284003
my computer
Intel(R) Core(TM)2 Duo CPU E7300 @
2.66GHz
RAM 4,00 GB
var('x y a b c d e f g h p q r s t u v O P Q R S T U V')
eq1 = 3*(((2*481501-3*y+1)/24)+3*x*(x+1)/2)+1-V == 0
eq2 = -481501+3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2 == 0
eq3 = 3*(((2*V-3*v+1)/24)+3*x*(x+1)/2)+1-U == 0
eq4 = V+3*v*(v-1)/2-12*x*(x+1)/2-1 == 0
eq5 = 3*(((2*U-3*u+1)/24)+3*x*(x+1)/2)+1-T == 0
eq6 = U+3*u*(u-1)/2-12*x*(x+1)/2-1 == 0
eq7 = 3*(((2*T-3*t+1)/24)+3*x*(x+1)/2)+1-S == 0
eq8 = T+3*t*(t-1)/2-12*x*(x+1)/2-1 == 0
eq9 = 3*(((2*S-3*s+1)/24)+3*x*(x+1)/2)+1-R == 0
eq10 = S+3*s*(s-1)/2-12*x*(x+1)/2-1 == 0
eq11 = 3*(((2*R-3*r+1)/24)+3*x*(x+1)/2)+1-Q == 0
eq12 = R+3*r*(r-1)/2-12*x*(x+1)/2-1 ==0
eq13 = 3*(((2*Q-3*q+1)/24)+3*x*(x+1)/2)+1-P == 0
eq14 = Q+3*q*(q-1)/2-12*x*(x+1)/2-1 == 0
eq15 = 3*(((2*P-3*p+1)/24)+3*x*(x+1)/2)+1-O == 0
eq16 = P+3*p*(p-1)/2-12*x*(x+1)/2-1 == 0
eq17 = 3*(((2*O-3*1+1)/24)+3*x*(x+1)/2)+1-O == 0
eq26 = a*(a-1)/2 -(x+1-1)*(x+1+1)/8 == 0
eq27 = b*(b-1)/2 -(a-1)*(a+1)/8 == 0
eq28 = c*(c-1)/2 -(b-1)*(b+1)/8 == 0
eq29 = d*(d-1)/2 -(c-1)*(c+1)/8 == 0
eq30 = e*(e-1)/2 -(d-1)*(d+1)/8 == 0
eq31 = f*(f-1)/2 -(e-1)*(e+1)/8 == 0
eq32 = g*(g-1)/2 -(f-1)*(f+1)/8 == 0
eq33 = h*(h-1)/2 -(g-1)*(g+1)/8 == 0
eq34 = h+1 == 0
solutions = solve([eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,eq15,eq16,eq17,eq26,eq27,eq28,eq29,eq30,eq31,eq32,eq33,eq34],x,y,a,b,c,d,e,f,g,h,p,q,r,s,t,u,v,O,P,Q,R,S,T,U,V)
sol = solutions[0]
print(sol[0])
print(sol[1])
OUTPUT
(x, y, a, b, c, d, e, f, g, h, p, q, r, s, t, u, v, O, P, Q, R, S, T, U, V)
x == 300
y == 201
Could you kindly try it on a new computer?
UPDATE4:
I think that once we have established the range of x and the range of y we have to exploit the inequalities.
For example this non-linear system in the underlying system we have to exploit:
256 <= x <= 510
129 <= y <= 257
O>P
P>Q
Q>R
R>S
S>T
T>U
U>V
V>481501
O>H
H>G
G>F
F>E
E>D
D>C
C>B
B>A
A>M
var('x y M a b c d e f g h A B C D E F G H p q r s t u v O P Q R S T U V')
eq1 = 3*(((2*481501-3*y+1)/24)+3*x*(x+1)/2)+1-V == 0
eq2 = -481501+3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2 == 0
eq3 = 3*(((2*V-3*v+1)/24)+3*x*(x+1)/2)+1-U == 0
eq4 = V+3*v*(v-1)/2-12*x*(x+1)/2-1 == 0
eq5 = 3*(((2*U-3*u+1)/24)+3*x*(x+1)/2)+1-T == 0
eq6 = U+3*u*(u-1)/2-12*x*(x+1)/2-1 == 0
eq7 = 3*(((2*T-3*t+1)/24)+3*x*(x+1)/2)+1-S == 0
eq8 = T+3*t*(t-1)/2-12*x*(x+1)/2-1 == 0
eq9 = 3*(((2*S-3*s+1)/24)+3*x*(x+1)/2)+1-R == 0
eq10 = S+3*s*(s-1)/2-12*x*(x+1)/2-1 == 0
eq11 = 3*(((2*R-3*r+1)/24)+3*x*(x+1)/2)+1-Q == 0
eq12 = R+3*r*(r-1)/2-12*x*(x+1)/2-1 ==0
eq13 = 3*(((2*Q-3*q+1)/24)+3*x*(x+1)/2)+1-P == 0
eq14 = Q+3*q*(q-1)/2-12*x*(x+1)/2-1 == 0
eq15 = 3*(((2*P-3*p+1)/24)+3*x*(x+1)/2)+1-O == 0
eq16 = P+3*p*(p-1)/2-12*x*(x+1)/2-1 == 0
eq17 = 3*(((2*O-3*1+1)/24)+3*x*(x+1)/2)+1-O == 0
eq35 = 3*((2*M - 3*(x+1) + 1)/24 + (3*x*(x + 1))/2) + 1 - A == 0
eq36 = -M + (3*x*(x + 1))/2 - (3*x*(x + 1))/2 + ((3*x + 1)*(3*x + 2))/2 == 0
eq37 = 3*((2*A - 3*a + 1)/24 + (3*x*(x + 1))/2) + 1 - B == 0
eq38 = A + (3*a*(a - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq39 = 3*((2*B - 3*b + 1)/24 + (3*x*(x + 1))/2) + 1 - C == 0
eq40 = B + (3*b*(b - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq41 = 3*((2*C - 3*c + 1)/24 + (3*x*(x + 1))/2) + 1 - D == 0
eq42 = C + (3*c*(c - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq43 = 3*((2*D - 3*d + 1)/24 + (3*x*(x + 1))/2) + 1 - E == 0
eq44 = D + (3*d*(d - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq45 = 3*((2*E - 3*e + 1)/24 + (3*x*(x + 1))/2) + 1 - F == 0
eq46 = E + (3*e*(e - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq47 = 3*((2*F - 3*f + 1)/24 + (3*x*(x + 1))/2) + 1 - G == 0
eq48 = F + (3*f*(f - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq49 = 3*((2*G - 3*g + 1)/24 + (3*x*(x + 1))/2) + 1 - H == 0
eq50 = G + (3*g*(g - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq51 = 3*((2*H - 3*h + 1)/24 + (3*x*(x + 1))/2) + 1 - O == 0
eq52 = H + (3*h*(h - 1))/2 - (12*x*(x + 1))/2 - 1 == 0
eq53 = 3*((2*O - 3*1 + 1)/24 + (3*x*(x + 1))/2) + 1 - O == 0
eq54 = -M+9*((2*481501 - 3*y + 1)/24+(y-1)*(y+1)/8)+1 == 0
solutions = solve([eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,eq15,eq16,eq17,eq35,eq36,eq37,eq38,eq39,eq40,eq41,eq42,eq43,eq44,eq45,eq46,eq47,eq48,eq49,eq50,eq51,eq52,eq53,eq54],x,y,M,a,b,c,d,e,f,g,h,A,B,C,D,E,F,G,H,p,q,r,s,t,u,v,O,P,Q,R,S,T,U,V)
sol = solutions
print(sol)
lowest possible computational cost?