Searching the other questions on definite integrals I did not find the same issue, maybe I missed it. I use SageMath 9.2
When I define these variables:
var('x,y', domain='real')
var('c,p_i', domain='positive')
f_x_pi = 1/5*(3*c - 0.06)*(0.2969*sqrt(x/(c - 0.02)) - 0.126*x/(c - 0.02) - 0.3516*x^2/(c - 0.02)^2 + 0.2843*x^3/(c - 0.02)^3 - 0.1036*x^4/(c - 0.02)^4)
c_i_u = c - 0.02
This:
I = integrate(integrate((x^2+y^2),y,-f_x_pi,f_x_pi),x,0,c_i_u)
return a Maxima requested additional constraints
error but this:
I_indef = integrate(integrate((x^2+y^2),y,-f_x_pi,f_x_pi),x)
I = I_indef(x=c_i_u) - I_indef(x=0)
or relying on algorithm='sympy'
, which is slower, does not.
I am wondering if that's a bug and whether I should report it.