R = PolynomialRing(QQ, 'a,b,c')
a,b,c = R.gens()
I = R.ideal(a2+a+1)
S = R.quotient(I, names=R.variable_names()).fractional_field()
a,b,c = S.gens()
show(a2/b**3) #this looks wrong
latex(a) #= \text{\texttt{a}}, should just be a
1 | initial version |
R = PolynomialRing(QQ, 'a,b,c')
a,b,c = R.gens()
I = R.ideal(a2+a+1)
S = R.quotient(I, names=R.variable_names()).fractional_field()
a,b,c = S.gens()
show(a2/b**3) #this looks wrong
latex(a) #= \text{\texttt{a}}, should just be a
R = PolynomialRing(QQ, 'a,b,c')
a,b,c = R.gens()
I = R.ideal(a2+a+1)
R.ideal(a**2+a+1)
S = R.quotient(I, names=R.variable_names()).fractional_field()
a,b,c = S.gens()
show(a2/b**3) show(a\*\*2/b\*\*3) #this looks wrong
latex(a) #= \text{\texttt{a}}, should just be a
R = PolynomialRing(QQ, 'a,b,c') a,b,c = R.gens() I = R.ideal(a2+a+1) S = R.quotient(I, names=R.variable_names()).fractional_field() a,b,c = S.gens() show(a2/b**3) #this looks wrong latex(a) #= \text{\texttt{a}}, should just be a
R = PolynomialRing(QQ, 'a,b,c') a,b,c = R.gens() I = R.ideal(a2+a+1) S = R.quotient(I, names=R.variable_names()).fractional_field() a,b,c = S.gens() show(a2/b**3) #this looks wrong latex(a) #= \text{\texttt{a}}, should just be a
R = PolynomialRing(QQ, 'a,b,c')
R = PolynomialRing(QQ, 'a,b,c')
a,b,c = R.gens()
I = R.ideal(a**2+a+1)
S = R.quotient(I, names=R.variable_names()).fractional_field()
a,b,c = S.gens()
show(a**2/b**3) #this looks wrong
latex(a) #= \text{\texttt{a}}, should just be a
R = PolynomialRing(QQ, 'a,b,c')
a,b,c = R.gens()
I = R.ideal(a**2+a+1)
S = R.quotient(I, names=R.variable_names()).fractional_field()
names=R.variable_names()).fraction_field()
a,b,c = S.gens()
show(a**2/b**3) #this looks wrong
latex(a) #= \text{\texttt{a}}, should just be a
Here is a block of code:
R = PolynomialRing(QQ, 'a,b,c')
a,b,c 'a, b, c')
a, b, c = R.gens()
I = R.ideal(a**2+a+1)
R.ideal(a**2 + a + 1)
S = R.quotient(I, names=R.variable_names()).fraction_field()
a,b,c a, b, c = S.gens()
show(a**2/b**3) #this # this looks wrong
latex(a) #= # = \text{\texttt{a}}, should just be a
`a`