Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

asked 4 years ago

MKS gravatar image

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations for a0,a1,a2,a3 in a finite field of order prime p (here p=229) in the form : $a_0+a_1\alpha_1+a_2\alpha_1^2+a_3\alpha_1^3 = b_1,a_0+a_1\alpha_2+a_2\alpha_2^2+a_3\alpha_2^3 = b_2,a_0+a_1\alpha_3+a_2\alpha_3^2+a_3\alpha_3^3 = b_3,a_0+a_1\alpha_4+a_2\alpha_4^2+a_3\alpha_4^3= b_4$,

where αi,biF(p),i=1234

MWE:

pm=229
bp=229
var('x')
F.<x> = GF(pm,impl='givaro')
R.<a0,a1,a2,a3> = PolynomialRing(F)


def NP(a):
    return F(ZZ(a).digits(bp)) # integer to polynomial


eqns = [a0+a1*NP(2)+a2*NP(2)^2+a3*NP(2)^3 - NP(78), a0+a1*NP(3)+a2*NP(3)^2+a3*NP(3)^3 - NP(136),a0+a1*NP(4)+a2*NP(4)^2+a3*NP(4)^3 - NP(179),a0+a1*NP(5)+a2*NP(5)^2+a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X=A.solve_right(b)
print X

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations for a0,a1,a2,a3 in a finite field of order prime p (here p=229) in the form :

$a_0+a_1\alpha_1+a_2\alpha_1^2+a_3\alpha_1^3 = b_1,a_0+a_1\alpha_2+a_2\alpha_2^2+a_3\alpha_2^3 = b_2,a_0+a_1\alpha_3+a_2\alpha_3^2+a_3\alpha_3^3 = b_3,a_0+a_1\alpha_4+a_2\alpha_4^2+a_3\alpha_4^3= b_4$,

where $\alpha_i,b_i\in F(p), i=1234$

MWE:i=1234$.
To do this I have tried with the following examples:

pm=229
bp=229
var('x')
F.<x> = GF(pm,impl='givaro')
R.<a0,a1,a2,a3> = PolynomialRing(F)


def NP(a):
    return F(ZZ(a).digits(bp)) # integer to polynomial


eqns = [a0+a1*NP(2)+a2*NP(2)^2+a3*NP(2)^3 - NP(78), a0+a1*NP(3)+a2*NP(3)^2+a3*NP(3)^3 - NP(136),a0+a1*NP(4)+a2*NP(4)^2+a3*NP(4)^3 - NP(179),a0+a1*NP(5)+a2*NP(5)^2+a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X=A.solve_right(b)
print X

But i shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations for a0,a1,a2,a3 in a finite field of order prime p (here p=229) in the form :

$a_0+a_1\alpha_1+a_2\alpha_1^2+a_3\alpha_1^3 = b_1,a_0+a_1\alpha_2+a_2\alpha_2^2+a_3\alpha_2^3 = b_2,a_0+a_1\alpha_3+a_2\alpha_3^2+a_3\alpha_3^3 = b_3,a_0+a_1\alpha_4+a_2\alpha_4^2+a_3\alpha_4^3= b_4$,

where αi,biF(p),i=1234.
To do this I have tried with the following examples:

pm=229
bp=229
var('x')
F.<x> = GF(pm,impl='givaro')
R.<a0,a1,a2,a3> = PolynomialRing(F)


def NP(a):
    return F(ZZ(a).digits(bp)) # integer to polynomial


eqns = [a0+a1*NP(2)+a2*NP(2)^2+a3*NP(2)^3 - NP(78), a0+a1*NP(3)+a2*NP(3)^2+a3*NP(3)^3 - NP(136),a0+a1*NP(4)+a2*NP(4)^2+a3*NP(4)^3 - NP(179),a0+a1*NP(5)+a2*NP(5)^2+a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X=A.solve_right(b)
print X

But i it shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations for a0,a1,a2,a3 (a0,a1,a2,a3) in a finite field of prime order prime p (here p=229) in the form :

$a_0+a_1\alpha_1+a_2\alpha_1^2+a_3:

$$a_0 + a_1 \alpha_1 + a_2 \alpha_1^2 + a_3 \alpha_1^3 = b_1,a_0+a_1\alpha_2+a_2\alpha_2^2+a_3b_1a_0 + a_1 \alpha_2 + a_2 \alpha_2^2 + a_3 \alpha_2^3 = b_2,a_0+a_1\alpha_3+a_2\alpha_3^2+a_3b_2a_0 + a_1 \alpha_3 + a_2 \alpha_3^2 + a_3 \alpha_3^3 = b_3,a_0+a_1\alpha_4+a_2\alpha_4^2+a_3\alpha_4^3= b_4$, b_3a_0 + a_1 \alpha_4 + a_2 \alpha_4^2 + a_3 \alpha_4^3 = b_4$$

where αi,biF(p),i=1234.
αi, biF(p), i=1,2,3,4.

To do this I have tried with the following examples:

pm=229
bp=229
var('x')
pm = 229
bp = 229
F.<x> = GF(pm,impl='givaro')
R.<a0,a1,a2,a3> GF(pm, impl='givaro')
R.<a0, a1, a2, a3> = PolynomialRing(F)
 
def NP(a):
    return F(ZZ(a).digits(bp))  # integer to polynomial

 eqns = [a0+a1*NP(2)+a2*NP(2)^2+a3*NP(2)^3 [a0 + a1*NP(2) + a2*NP(2)^2 + a3*NP(2)^3 - NP(78), a0+a1*NP(3)+a2*NP(3)^2+a3*NP(3)^3 NP(78),
        a0 + a1*NP(3) + a2*NP(3)^2 + a3*NP(3)^3 - NP(136),a0+a1*NP(4)+a2*NP(4)^2+a3*NP(4)^3 NP(136),
        a0 + a1*NP(4) + a2*NP(4)^2 + a3*NP(4)^3 - NP(179),a0+a1*NP(5)+a2*NP(5)^2+a3*NP(5)^3 NP(179),
        a0 + a1*NP(5) + a2*NP(5)^2 + a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X=A.solve_right(b)
print X
X = A.solve_right(b)
print(X)

But it shows erros: erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations for (a0,a1,a2,a3) equations in a finite field of prime order p (here p=229) in the form :

a0+a1α1+a2α21+a3α31=b1 a0+a1α2+a2α22+a3α32=b2 a0+a1α3+a2α23+a3α33=b3 a0+a1α4+a2α24+a3α34=b4

where p (illustrated below with p=229).

The system consists in four equations and has four unknowns a0, a1, a2, a3.

It depends on parameters αi, biF(p), bi, all in F(p), for i=1,2,3,4.

The four equations are

a0+a1α1+a2α21+a3α31=b1 a0+a1α2+a2α22+a3α32=b2 a0+a1α3+a2α23+a3α33=b3 a0+a1α4+a2α24+a3α34=b4

To do this I have tried with the following examples:

pm = 229
bp = 229
F.<x> = GF(pm, impl='givaro')
R.<a0, a1, a2, a3> = PolynomialRing(F)

def NP(a):
    return F(ZZ(a).digits(bp))  # integer to polynomial

eqns = [a0 + a1*NP(2) + a2*NP(2)^2 + a3*NP(2)^3 - NP(78),
        a0 + a1*NP(3) + a2*NP(3)^2 + a3*NP(3)^3 - NP(136),
        a0 + a1*NP(4) + a2*NP(4)^2 + a3*NP(4)^3 - NP(179),
        a0 + a1*NP(5) + a2*NP(5)^2 + a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X = A.solve_right(b)
print(X)

But it shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations in a finite field of prime order p (illustrated below with p=229).

The system consists in four equations and has four unknowns a0, a1, a2, a3.

It depends on parameters αi, bi, all in F(p), for i=1,2,3,4.

The four equations are

a0+a1α1+a2α21+a3α31=b1 a0+a1α2+a2α22+a3α32=b2 a0+a1α3+a2α23+a3α33=b3 a0+a1α4+a2α24+a3α34=b4

To do this I have tried with the following examples:

pm = 229
bp = 229
F.<x> = GF(pm, impl='givaro')
R.<a0, a1, a2, a3> = PolynomialRing(F)

def NP(a):
    return F(ZZ(a).digits(bp))  # integer to polynomial

eqns = [a0 + a1*NP(2) + a2*NP(2)^2 + a3*NP(2)^3 - NP(78),
        a0 + a1*NP(3) + a2*NP(3)^2 + a3*NP(3)^3 - NP(136),
        a0 + a1*NP(4) + a2*NP(4)^2 + a3*NP(4)^3 - NP(179),
        a0 + a1*NP(5) + a2*NP(5)^2 + a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X = A.solve_right(b)
print(X)

But it shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations in a finite field of prime order p (illustrated below with p=229).

The system consists in four equations and has four unknowns a0, a1, a2, a3.

It depends on parameters αi, bi, all in F(p), for i=1,2,3,4.

The four equations are

a0+a1α1+a2α21+a3α31=b1 a0+a1α2+a2α22+a3α32=b2 a0+a1α3+a2α23+a3α33=b3 a0+a1α4+a2α24+a3α34=b4

To do this I have tried with the following examples:

pm = 229
bp = 229
F.<x> = GF(pm, impl='givaro')
R.<a0, a1, a2, a3> = PolynomialRing(F)

def NP(a):
    return F(ZZ(a).digits(bp))  # integer to polynomial

eqns = [a0 + a1*NP(2) + a2*NP(2)^2 + a3*NP(2)^3 - NP(78),
        a0 + a1*NP(3) + a2*NP(3)^2 + a3*NP(3)^3 - NP(136),
        a0 + a1*NP(4) + a2*NP(4)^2 + a3*NP(4)^3 - NP(179),
        a0 + a1*NP(5) + a2*NP(5)^2 + a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X = A.solve_right(b)
print(X)

But it shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations in a finite field of prime order p (illustrated below with p=229).

The system consists in four equations and has four unknowns a0, a1, a2, a3.

It depends on parameters αi, bi, all in F(p), for i=1,2,3,4.

The four equations are

a0+a1α1+a2α21+a3α31=b1 a0+a1α2+a2α22+a3α32=b2 a0+a1α3+a2α23+a3α33=b3 a0+a1α4+a2α24+a3α34=b4

To do this I have tried with the following examples:

pm = 229
bp = 229
F.<x> = GF(pm, impl='givaro')
R.<a0, a1, a2, a3> = PolynomialRing(F)

def NP(a):
    return F(ZZ(a).digits(bp))  # integer to polynomial

eqns = [a0 + a1*NP(2) + a2*NP(2)^2 + a3*NP(2)^3 - NP(78),
        a0 + a1*NP(3) + a2*NP(3)^2 + a3*NP(3)^3 - NP(136),
        a0 + a1*NP(4) + a2*NP(4)^2 + a3*NP(4)^3 - NP(179),
        a0 + a1*NP(5) + a2*NP(5)^2 + a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X = A.solve_right(b)
print(X)

But it shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?

Errors in solving system of equations using "Givaro" for finite fields.

I would like to solve a system of equations in a finite field of prime order p (illustrated below with p=229).

The system consists in four equations and has four unknowns a0, a1, a2, a3.

It depends on parameters αi, bi, all in F(p), for i=1,2,3,4.

The four equations are

a0+a1α1+a2α21+a3α31=b1 a0+a1α2+a2α22+a3α32=b2 a0+a1α3+a2α23+a3α33=b3 a0+a1α4+a2α24+a3α34=b4

To do this I have tried with the following examples:

pm = 229
bp = 229
F.<x> = GF(pm, impl='givaro')
R.<a0, a1, a2, a3> = PolynomialRing(F)

def NP(a):
    return F(ZZ(a).digits(bp))  # integer to polynomial

eqns = [a0 + a1*NP(2) + a2*NP(2)^2 + a3*NP(2)^3 - NP(78),
        a0 + a1*NP(3) + a2*NP(3)^2 + a3*NP(3)^3 - NP(136),
        a0 + a1*NP(4) + a2*NP(4)^2 + a3*NP(4)^3 - NP(179),
        a0 + a1*NP(5) + a2*NP(5)^2 + a3*NP(5)^3 - NP(166)]
A = matrix(F, [[eqn.coefficient(b) for b in R.gens()] for eqn in eqns])
b = vector(F, [-eqn.constant_coefficient() for eqn in eqns])
X = A.solve_right(b)
print(X)

But it shows erros:

Unhandled SIGSEGV: A segmentation fault occurred.
This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.
------------------------------------------------------------------------
/usr/share/sagemath/bin/sage-python: line 2:  7655 Segmentation fault      (core dumped) sage -python "$@"

How can I fix this?