Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

metric to christoffel symbols yielding overflow

Hello,

with sage manifold i tried the folowing commands (in a sage 9.1 notebook)

M = Manifold(4, 'M', structure='Lorentzian')

-----------------------

Mani.<t,x,rh,ph> = M.chart(r"t X:(-oo,+oo) rh:(0,+oo):\rho ph:(0,2*pi):\phi")

---------------------

B = function('B')(X,rh,ph) d_Ph_X = function('d_Ph_X')(X,rh,ph) d_Ph_rh = function('d_Ph_rh')(X,rh,ph) d_Ph_ph = function('d_Ph_ph')(X,rh,ph)

--------

g = M.metric()

g[0,0] = (-1+B2* ((d_Ph_X/B2)2 +(d_Ph_rh/B2)2 +((1/rhd_Ph_ph/B2)*2 )))

g[1,1] = B2 g[2,2] = B2 g[3,3] = rh2*B2

g[0,1] = B2(d_Ph_X/B2) g[0,2] = B2( d_Ph_rh/B2) g[0,3] = B2*( d_Ph_ph/B2)

-----------------

g.christoffel_symbols_display()


the line "g.christoffel_symbols_display()" makes the notebook overflow... i really don't understand why..

the computation even if it is rather tedious seems straightforward to me...

Any idea ? Any help would be greatly appreciated. Have a good day,

metric to christoffel symbols yielding overflow

Hello,In a Sage 9.1 Jupyter notebook I tried the following SageManifolds commands

with sage manifold i tried the folowing commands (in a sage 9.1 notebook)

M = Manifold(4, 'M', structure='Lorentzian')

structure='Lorentzian')

-----------------------

Mani.<t,x,rh,ph> Mani.<t,X,rh,ph> = M.chart(r"t X:(-oo,+oo) rh:(0,+oo):\rho ph:(0,2*pi):\phi")

ph:(0,2*pi):\phi")

---------------------

B = function('B')(X,rh,ph) d_Ph_X = function('d_Ph_X')(X,rh,ph) d_Ph_rh = function('d_Ph_rh')(X,rh,ph) d_Ph_ph = function('d_Ph_ph')(X,rh,ph)

function('d_Ph_ph')(X,rh,ph)

--------

g = M.metric()

M.metric()

g[0,0] = (-1+B2* (-1+B**2* ((d_Ph_X/B2)2 +(d_Ph_rh/B2)2 +((1/rhd_Ph_ph/B2)*2 ((d_Ph_X/B**2)**2 +(d_Ph_rh/B**2)**2 +((1/rh*d_Ph_ph/B**2)**2 )))

))) g[1,1] = B**2 g[2,2] = B**2 g[3,3] = rh**2*B**2 g[0,1] = B**2*(d_Ph_X/B**2) g[0,2] = B**2*( d_Ph_rh/B**2) g[0,3] = B**2*( d_Ph_ph/B**2) g.christoffel_symbols_display()

g[1,1] = B2 g[2,2] = B2 g[3,3] = rh2*B2

g[0,1] = B2(d_Ph_X/B2) g[0,2] = B2( d_Ph_rh/B2) g[0,3] = B2*( d_Ph_ph/B2)

-----------------

g.christoffel_symbols_display()


the The last line "g.christoffel_symbols_display()" makes the notebook overflow... i really don't understand why..why.

the computation computation, even if it is rather tedious tedious, seems straightforward to me...

Any idea ? idea? Any help would be greatly appreciated. Have a good day,appreciated.