f=xz+xy*z+y+1; f.coefficient({z:1})
f.coeffcients(z)
1 | initial version |
f=xz+xy*z+y+1; f.coefficient({z:1})
f.coeffcients(z)
f=xz+xy*z+y+1; f.coefficient({z:1})
f.coeffcients(z)f.coeffcient(z)
f=xz+xy*z+y+1;
f.coefficient({z:1})
f.coefficient(z,1) f.coefficient({z:1}) f.coeffcient(z)
f=xz+xy*z+y+1; f.coefficient(z,1) f.coefficient({z:1}) f.coeffcient(z)
f=xz+xy*z+y+1; f.coefficient(z,1) f.coefficient({z:1}) f.coeffcient(z)
f=xf = xz+xy*z+y+1;
f.coefficient(z,1)
f.coefficient({z:1})
y*z+y+1
f.coefficient(z, 1)
f.coefficient({z: 1})
f.coeffcient(z)
f = xz+xy*z+y+1 f.coefficient(z, 1) f.coefficient({z: 1}) f.coeffcient(z)
F=ZZ.quo(3ZZ);F
A.<x,y,z>=PolynomialRing(F);A
R<x,y,z> = A.quotient(ideal(X^2-1,Y^2-1,Z^2-1))
f = xz+xz+xyy*z+y+1
z+y+1
f.coefficient(z, 1)
f.coefficient({z: 1})
f.coeffcient(z)
F=ZZ.quo(3ZZ);F
A.<x,y,z>=PolynomialRing(F);A
R<x,y,z> Here is what I tried.
sage: F = A.quotient(ideal(X^2-1,Y^2-1,Z^2-1))
ZZ.quo(3*ZZ); F
sage: A.<X, Y, Z> = PolynomialRing(F); A
sage: R.<x, y, z> = A.quotient(ideal(X^2 - 1, Y^2 - 1, Z^2 - 1))
sage: f = xz+xyz+y+1
x*z + x*y*z + y + 1
sage: f.coefficient(z, 1)
sage: f.coefficient({z: 1})
f.coeffcient(z)sage: f.coeffcient(z)