Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Finding polynomial solutions that belong to an ideal

I have a system of equations in which the variables belong to a certain ideal of a polynomial ring over a field. We can call this ideal $I$ and its generators $c_1$, $c_2$ and $c_3$. Let's take the ring to be $\mathbb{F}_2[x_1,x_2,x_3]$ and the ideal to be $x_1x_2x_3-1,x_2-x_1,x_1-1$ . Let's say the equations are $g_1+x_1w_2+x_2w_3 = x_1-1$, $g_2+x_2w_1+x_3w_3 = x_2-1$ and $g_3+x_1w_1+w_2 = x_3-1$ and one needs to find solution to the above set of equations with variables $g_i$ and $w_i$ inside the ideal $I$. There are of course more variables than equations here. One obvious solution is $g_1=x_1-1,g_2=x_2-1, g_3=x_3-1$. How does one find the full set of solutions? I thought of implementing this as a syzygy problem where I take $x_1-1$ and so on on the left but that seems to not work.

Finding polynomial solutions that belong to an ideal

I have a system of equations in which the variables belong to a certain ideal of a polynomial ring over a field. We can call this ideal $I$ and its generators $c_1$, $c_2$ and $c_3$. Let's take the ring to be $\mathbb{F}_2[x_1,x_2,x_3]$ and the ideal to be $x_1x_2x_3-1,x_2-x_1,x_1-1$ $I=<x_1x_2x_3-1,x_2-x_1,x_1-1>$ . Let's say the equations are $g_1+x_1w_2+x_2w_3 = x_1-1$, $g_2+x_2w_1+x_3w_3 = x_2-1$ and $g_3+x_1w_1+w_2 = x_3-1$ and one needs to find solution to the above set of equations with variables $g_i$ and $w_i$ inside the ideal $I$. There are of course more variables than equations here. One obvious solution is $g_1=x_1-1,g_2=x_2-1, g_3=x_3-1$. How does one find the full set of solutions? I thought of implementing this as a syzygy problem where I take $x_1-1$ and so on on the left but that seems to not work. work.

Finding polynomial solutions that belong to an ideal

I have a system of equations in which the variables belong to a certain ideal of a polynomial ring over a field. We can call this ideal $I$ and its generators $c_1$, $c_2$ and $c_3$. Let's take the ring to be $\mathbb{F}_2[x_1,x_2,x_3]$ and the ideal to be $I=<x_1x_2x_3-1,x_2-x_1,x_1-1>$ . Let's say the equations are $g_1+x_1w_2+x_2w_3 = x_1-1$, $g_2+x_2w_1+x_3w_3 = x_2-1$ and $g_3+x_1w_1+w_2 = x_3-1$ and one needs to find solution to the above set of equations with variables $g_i$ and $w_i$ inside the ideal $I$. There are of course more variables than equations here. One obvious solution is $g_1=x_1-1,g_2=x_2-1, g_3=x_3-1$. How does one find the full set of solutions? I thought of implementing this as a syzygy problem where I take $x_1-1$ and so on on the left but that seems to be not work.ideal since it is not clear whether I find all solutions or not.

Finding polynomial solutions that belong to an ideal

I have a system of equations in which the variables belong to a certain ideal of a polynomial ring over a field. We can call this ideal $I$ and its generators $c_1$, $c_2$ and $c_3$. Let's take the ring to be $\mathbb{F}_2[x_1,x_2,x_3]$ and the ideal to be $I=<x_1x_2x_3-1,x_2-x_1,x_1-1>$ . Let's say the equations are $g_1+x_1w_2+x_2w_3 = x_1-1$, $g_2+x_2w_1+x_3w_3 = x_2-1$ and $g_3+x_1w_1+w_2 = x_3-1$ and one needs to find solution to the above set of equations with variables $g_i$ and $w_i$ inside the ideal $I$. There are of course more variables than equations here. One obvious solution is $g_1=x_1-1,g_2=x_2-1, g_3=x_3-1$. How does one find the full set of solutions? I thought of implementing this as a syzygy problem where I take $x_1-1$ and so on on the left but that seems to be not ideal since it is not clear whether I find all solutions or not.not. To simplify the problem, we can choose a cut-off for degree of polynomial solutions, for example, 1 or 2.