Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Numerical optimization

I want to find the numerical maximum for I and then substitute the result in UU, but I cannot obtain the numeriacl value of I in the following code

var("U,X,alpha,W0,W1,W2,pp,I, bb")

U= X^.5

b=1.2 # pouvoir de monopole

p=0.5 # probabilité qu'il ne se produise rien

w0=8 # richesse initiale

D=6 # coût du dommage

a= .5

W1=w0-(1-p)bI

W2=w0-D+(1-(1-p)b)I

UU= pU(W1)+(1-p)U(W2)

show(UU)

UU_I = UU.diff(I)

show(UU_I)

solve(UU_I==0, I)

Numerical optimization

I want to find the numerical maximum for I and then substitute the result in UU, but I cannot obtain the numeriacl value of I in the following code

var("U,X,alpha,W0,W1,W2,pp,I, bb")

bb") U= X^.5

U= X^.5

b=1.2 # pouvoir de monopole

monopole

p=0.5 # probabilité qu'il ne se produise rien

rien

w0=8 # richesse initiale

initiale

D=6 # coût du dommage

dommage a= .5

a= .5

W1=w0-(1-p)*b*I W2=w0-D+(1-(1-p)*b)*I

W1=w0-(1-p)bI

W2=w0-D+(1-(1-p)b)I

UU= p*U(W1)+(1-p)*U(W2) show(UU)

UU= pU(W1)+(1-p)U(W2)

show(UU)

UU_I = UU.diff(I)

UU.diff(I) show(UU_I)

show(UU_I)

solve(UU_I==0, I)

I)

Numerical optimization

I want to find the numerical maximum for I and then substitute the result in UU, but I cannot obtain the numeriacl value of I in the following code

var("U,X,alpha,W0,W1,W2,pp,I, bb")
 U= X^.5
 b=1.2 # pouvoir de monopole
 p=0.5 # probabilité qu'il ne se produise rien
 w0=8 # richesse initiale
 D=6 # coût du dommage
 a= .5
W1=w0-(1-p)*b*I
W2=w0-D+(1-(1-p)*b)*I
UU= p*U(W1)+(1-p)*U(W2)
show(UU)
UU_I = UU.diff(I)  a= .5  
  W1=w0-(1-p)*b*I

  W2=w0-D+(1-(1-p)*b)*I   

  UU= p*U(W1)+(1-p)*U(W2)

  show(UU)

  UU_I = UU.diff(I)

 show(UU_I)
 solve(UU_I==0, I)

Numerical optimization

I want to find the numerical maximum for I and then substitute the result in UU, but I cannot obtain the numeriacl numerical value of I in the following code

var("U,X,alpha,W0,W1,W2,pp,I, bb")
 U= X^.5
 b=1.2 # pouvoir de monopole
 p=0.5 # probabilité qu'il ne se produise rien
 w0=8 # richesse initiale
 D=6 # coût du dommage
a= .5
W1=w0-(1-p)*b*I
W2=w0-D+(1-(1-p)*b)*I
UU= p*U(W1)+(1-p)*U(W2)
show(UU)
UU_I = UU.diff(I)   a= .5  
  W1=w0-(1-p)*b*I

  W2=w0-D+(1-(1-p)*b)*I   

  UU= p*U(W1)+(1-p)*U(W2)

  show(UU)

  UU_I = UU.diff(I)

 show(UU_I)
 solve(UU_I==0, I)