sage: E=EllipticCurve([0,-1,0,-4,-2]) sage: E.gens() [(3 : 2 : 1)] sage: T=E.torsion_subgroup() sage: T.points() [(0 : 1 : 0), (-1 : 0 : 1)] What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
| 1 | initial version |
sage: E=EllipticCurve([0,-1,0,-4,-2]) sage: E.gens() [(3 : 2 : 1)] sage: T=E.torsion_subgroup() sage: T.points() [(0 : 1 : 0), (-1 : 0 : 1)] What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
sage: E=EllipticCurve([0,-1,0,-4,-2]) sage: E.gens() [(3 : 2 : 1)] sage: T=E.torsion_subgroup() sage: T.points() [(0 : 1 : 0), (-1 : 0 : 1)] What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
sage: E=EllipticCurve([0,-1,0,-4,-2])
E=EllipticCurve([0,-1,0,-4,-2])
sage: E.gens()
E.gens()
[(3 : 2 : 1)]
1)]
sage: T=E.torsion_subgroup()
T=E.torsion_subgroup()
sage: T.points()
T.points()
[(0 : 1 : 0), (-1 : 0 : 1)]
1)]
What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
sage: E=EllipticCurve([0,-1,0,-4,-2])
sage: E.gens()
[(3 : 2 : 1)]
sage: T=E.torsion_subgroup()
sage: T.points()
[(0 : 1 : 0), (-1 : 0 : 1)]
What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
sage: E=EllipticCurve([0,-1,0,-4,-2])
sage: E.gens()
What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
Code:
sage: E=EllipticCurve([0,-1,0,-4,-2])
sage: E.gens() sage: E.gens()
[(3 : 2 : 1)]
sage: T=E.torsion_subgroup()
sage: T.points()
[(0 : 1 : 0), (-1 : 0 : 1)]1)]
What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
Code:
sage: E=EllipticCurve([0,-1,0,-4,-2])
E = EllipticCurve([0,-1,0,-4,-2])
sage: E.gens()
[(3 : 2 : 1)]
sage: T=E.torsion_subgroup()
T = E.torsion_subgroup()
sage: T.points()
[(0 : 1 : 0), (-1 : 0 : 1)]
What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
| 8 | retagged |
Code:
sage: E = EllipticCurve([0,-1,0,-4,-2])
sage: E.gens()
[(3 : 2 : 1)]
sage: T = E.torsion_subgroup()
sage: T.points()
[(0 : 1 : 0), (-1 : 0 : 1)]
What is the generator of the group E(Q)?Is it the point (3,2) only? or the point (3,2)+(-1,0)?
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.