Hi, I want to check the finiteness of a polynomial map of complex variables. In particular, I want to check whether the map $$f: \mathbb{C}^2 \to \mathbb{C}^2$$ $$f(x,y) = (x^3 - 3xy - 3x, y^3 - 3x^2 y +6y^2 +9y)$$ is finite ?
| 1 | initial version |
Hi, I want to check the finiteness of a polynomial map of complex variables. In particular, I want to check whether the map $$f: \mathbb{C}^2 \to \mathbb{C}^2$$ $$f(x,y) = (x^3 - 3xy - 3x, y^3 - 3x^2 y +6y^2 +9y)$$ is finite ?
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.