Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Residue in complex analysis

  1. is there a way to compute the residue of a meromorphic function f(z) at z=z0 in sage?
  2. if so, I'd like to nest such method to compute residue at a flag, $$ \operatorname{Res}_F f(x_1,\ldots,x_n) := \operatorname{Res}_{x_1=x_1^,\ldots,x_n=x_n^}\cdots\operatorname{Res}_{x_2=x_2^, x_1=x_1^} \operatorname{Res}_{x_1=x_1^} f(x_1,\ldots,x_n)wherestarredvaluesdenoteanumericalvalue(sameas$z0$before)andtheflagisF =([x_1=x_1^,\ldots,x_n=x_n^] \supset \cdots \supset [x_2=x_2^, x_1=x_1^] \supset [x_1=x_1^])Noticethechoiceofordermatters.Forexample,let$f=1(1x1)(1x1x2)$and$F=([x1=1][x2=1,x1=1])$.Then \operatorname{Res}_F f(x_1,x_2) = 1$$
  3. if that works, I'd like to build a function that takes as input the point (x1,,xn), for various values of n, builds f in a certain way, and gives back the residue as a function of the input: is this achievable?