This is an incredible result of SageMath since one is obliged to help Mathematica to obtain the result
var('A, x, y, l, alpha, beta, R, p_x, p_y'); U= Ax^(alpha)y^(beta); show(U) D = p_xx + p_yy; show(D) show(U) solve(D==R, y) L = U-l*(D-R) show(L) L_x= L.diff(x) show(L_x) L_y= L.diff(y) show(L_y) L_lambda= L.diff(l) show(L_l) z=solve([L_x==0, L_y==0, L_l==0,], x, y, l) show(z[0]) x1=z[0][0].right() show(x1) y1=z[0][1].right() show(y1) U1=U.subs(x=x1,y=y1) show(U1)
But I would ameliorate the presentation :
1) How can I substitute greek $\lambda$ to l in the code ?
2) The final result should be simplified because there are possible factorizations ?
3) How can I, without rewriting, all the code add the hypothesis $\alpha+ \beta =1$ ?
4) how to have the results automaticaly written in LaTeX without using show()
A great hand shake for the one who will help me on those maters.