Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

From numerical variables to symbolic variables

I would like to define an Hamiltonian dynamics that I will integrate later using scipy.integrate. The Hamiltonian is computed with a symbolic expression and then I need to make substitution from the symbolic variables to the numerical variables.

N=2
var('q1 q2')
var('p1 p2')

qs = [q1,q2]
ps = [p1,p2]

def dynq(t,z):
    H = p1*(q1^2+1/3*q2^2) + p2*(cos(q1)-2*sin(q2*q1)^2)
    jacHp = jacobian(H,tuple(ps))
    dqdt = list(jacHp)
    dqdt = list(dqdt[0])
    dqdt[0].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[1].subs({qs[i]:z[i] for i in range(0,N)})
    print(dqdt)
    return dqdt

I call dynq(0.,[1.,0.5]) and the output is

[q1^2, -2*sin(q1*q2)^2 + cos(q1)]

so q1,q2,p1,p2 are still in the expression and are not replaced by the numerical values of the list $z$.

From numerical variables to symbolic variables

I would like to define an Hamiltonian dynamics that I will integrate later using scipy.integrate. The Hamiltonian is computed with a symbolic expression and then I need to make substitution from the symbolic variables to the numerical variables.

N=2
var('q1 q2')
var('p1 p2')

qs = [q1,q2]
ps = [p1,p2]

def dynq(t,z):
    H = p1*(q1^2+1/3*q2^2) + p2*(cos(q1)-2*sin(q2*q1)^2)
    jacHp = jacobian(H,tuple(ps))
    dqdt = list(jacHp)
    dqdt = list(dqdt[0])
list(jacHp[0])
    dqdt[0].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[1].subs({qs[i]:z[i] for i in range(0,N)})
    print(dqdt)
    return dqdt

I call dynq(0.,[1.,0.5]) and the output is

[q1^2, -2*sin(q1*q2)^2 + cos(q1)]

so q1,q2,p1,p2 are still in the expression and are not replaced by the numerical values of the list $z$.

From numerical variables to symbolic variables

I would like to define an Hamiltonian dynamics that I will integrate later using scipy.integrate. The Hamiltonian is computed with a symbolic expression and then I need to make substitution from the symbolic variables to the numerical variables.

N=2
var('q1 q2')
var('p1 p2')

qs = [q1,q2]
ps = [p1,p2]

def dynq(t,z):
    H = p1*(q1^2+1/3*q2^2) + p2*(cos(q1)-2*sin(q2*q1)^2)
    jacHp = jacobian(H,tuple(ps))
    dqdt = list(jacHp[0])
    dqdt[0].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[0].subs({ps[i]:z[i+N] for i in range(0,N)})
    dqdt[1].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[1].subs({ps[i]:z[i+N] for i in range(0,N)})
    print(dqdt)
    return dqdt

I call dynq(0.,[1.,0.5])dynq(0.,[1.,0.5,4.,2.]) and the output is

[q1^2, -2*sin(q1*q2)^2 + cos(q1)]

so q1,q2,p1,p2 are still in the expression and are not replaced by the numerical values of the list $z$.

From numerical variables to symbolic variables

I would like to define an Hamiltonian dynamics that I will integrate later using scipy.integrate. The Hamiltonian is computed with a symbolic expression and then I need to make substitution from the symbolic variables to the numerical variables.

N=2
var('q1 q2')
var('p1 p2')

qs zs = [q1,q2]
ps = [p1,p2]
[q1,q2,p1,p2]

def dynq(t,z):
    H = p1*(q1^2+1/3*q2^2) + p2*(cos(q1)-2*sin(q2*q1)^2)
    jacHp = jacobian(H,tuple(ps))
    dqdt = list(jacHp[0])
    dqdt[0].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[0].subs({ps[i]:z[i+N] for i in range(0,N)})
    dqdt[1].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[1].subs({ps[i]:z[i+N] for i in range(0,N)})
    print(dqdt)
    return dqdt

I call dynq(0.,[1.,0.5,4.,2.]) and the output is

[q1^2, -2*sin(q1*q2)^2 + cos(q1)]

so q1,q2,p1,p2 are still in the expression and are not replaced by the numerical values of the list $z$.

From numerical variables to symbolic variables

I would like to define an Hamiltonian dynamics that I will integrate later using scipy.integrate. The Hamiltonian is computed with a symbolic expression and then I need to make substitution from the symbolic variables to the numerical variables.

N=2
var('q1 q2')
var('p1 p2')

zs = [q1,q2,p1,p2]

def dynq(t,z):
    H = p1*(q1^2+1/3*q2^2) + p2*(cos(q1)-2*sin(q2*q1)^2)
    jacHp = jacobian(H,tuple(ps))
    dqdt = list(jacHp[0])
    dqdt[0].subs({qs[i]:z[i] dqdt[0].subs({zs[i]:z[i] for i in range(0,N)})
range(0,2*N)})
 dqdt[0].subs({ps[i]:z[i+N] dqdt[1].subs({zs[i]:z[i] for i in range(0,N)})
    dqdt[1].subs({qs[i]:z[i] for i in range(0,N)})
    dqdt[1].subs({ps[i]:z[i+N] for i in range(0,N)})
range(0,2*N)})
    print(dqdt)
    return dqdt

I call dynq(0.,[1.,0.5,4.,2.]) and the output is

[q1^2, -2*sin(q1*q2)^2 + cos(q1)]

so q1,q2,p1,p2 are still in the expression and are not replaced by the numerical values of the list $z$.