Ask Your Question

Revision history [back]

Derivative of a recurrence equation

Given:

var('β α γ t R')
 c = function('c')
 g = function('g')
 f = function('f') 
 λ = function('λ')

Suppose I define a function as

def U(l):
 eq = 0
 for i in range(0,l):
         eq += (β^i)*(((c(t+i)+α*g(t+i))^(1-R))/(1-R))
     return eq

How do I take the first order derivative w.r.t C_t C_t+1 and so forth?

I tried:

 n = 2 
 L = U(n) 
 L.derivative(c(t))

Without any luck.

Derivative of a recurrence equation

Given:

var('β α γ t R')
 c = function('c')
 g = function('g')
 f = function('f') 
 function('f')
λ = function('λ')

Suppose suppose I define a function as

def U(l):
  eq = 0
  for i in range(0,l):
 range(l):
        eq += (β^i)*(((c(t+i)+α*g(t+i))^(1-R))/(1-R))
     return eq

How do I take the first order derivative w.r.t C_t C_t+1 w.r.t. C_t C_t+1 and so forth? forth?

I tried:

 n = 2 
 2
L = U(n) 
 U(n)
L.derivative(c(t))

Without without any luck.