I have a vector say a $9 \times 9$ vector which looks: \begin{align} \begin{pmatrix} 2x +1 \ x \ 1 \ x \ x^2 + 2x \ 2x \ x\ 2x^2 \ 0 \ \end{matrix} \end{align} These entries in $\mathbb{F}_3[x]$ . There are 9 rows in this matrix and i want to write a function which takes an $n^2 \times 1$ matrix and turns it into a $n \times n$ matrix. So, in this case, we want the function would turn the above vector into
\begin{align} \begin{bmatrix} 2x+1 & x & 1 \ \end{bmatrix} \end{align} \begin{align} \begin{bmatrix} x & x^2+2x & 2x \ \end{bmatrix} \end{align} \begin{align} \begin{bmatrix} x & 2x^2 & 0 \ \end{bmatrix} \end{align}
In this sage, I tried this: sage: v = Matrix(GF(3)[x], [[2x+1],[x],[1],[x],[x^2+2x],[2x],[x],[2x^2],[0]]) Then, write the following: sage: Matrix(v.base_ring(), 3, 3, v)
This gave an error: inconsistent number of rows: should be 3 but got 1