Is there an option to calculate the codimension of an ideal or submodule in Sage. For example, I have the following ideal
$I=(1+x+y+xy , 1+y+z+yz , 1+x+z+xz)$
in $\mathbb{Z}_{2}\left[x,y,z\right]$ or the following free submodule
\begin{align} \left(\begin{array}{cccccc} 0 & 0 & 0 & 1+x+y+xy & 1+y+z+yz & 1+x+z+xz\newline 1+z & 1+x & 0 & 0 & 0 & 0\newline 0 & 1+x& 1+y & 0 & 0 & 0 \end{array}\right) \end{align}
in $\left(\mathbb{Z}_{2}\left[x,y,z\right]\right)^{3}$
where $\mathbb{Z}_{2}\left[x,y,z\right]^{3}$ is a polynomial ring in variables $x,y,z$ over field $\mathbb{F}_2$.