Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

desolve initial condition involving e gives strange answer

I'm trying to do some basic differential equations in Sage. When I run the following:

var('t')

y = function('y')(t)

de1 = t^3diff(y, t) + 4t^2*y == e^(t^2)

desolve(de1, y, ics = [1,e])

The output is

1/2*(e^(t^2) + y(t))/t^4

My expectation is that there shouldn't by any y(t) term in the output. If I make a seemingly meaningless tweak to my initial conditions:

desolve(de1, y, ics = [1,e*1])

I get the expected output of

1/2*(e + e^(t^2))/t^4

If I change the initial conditions to [1, e/2], I again get the output I expect. I haven't been able to reproduce this issue with any other example. Maybe the issue just comes in converting Sage's version of e into Maxima? Does anyone know what is going on here?

desolve initial condition involving e gives strange answer

I'm trying to do some basic differential equations in Sage. When I run the following:

var('t')   

var('t')

y = function('y')(t)

function('y')(t) de1 = t^3diff(y, t^3*diff(y, t) + 4t^2*y 4*t^2*y == e^(t^2)

e^(t^2) desolve(de1, y, ics = [1,e])

[1,e])

The output is

1/2*(e^(t^2) + y(t))/t^4

y(t))/t^4

My expectation is that there shouldn't by any y(t) term in the output. If I make a seemingly meaningless tweak to my initial conditions:

desolve(de1, y, ics = [1,e*1])

[1,e*1])

I get the expected output of

1/2*(e + e^(t^2))/t^4

e^(t^2))/t^4

If I change the initial conditions to [1, e/2], I again get the output I expect. I haven't been able to reproduce this issue with any other example. Maybe the issue just comes in converting Sage's version of e into Maxima? Does anyone know what is going on here?

desolve initial condition involving e gives strange answer

I'm trying to do some basic differential equations in Sage. When I run the following:

var('t') 
y = function('y')(t)
de1 = t^3*diff(y, t) + 4*t^2*y == e^(t^2)
desolve(de1, y, ics = [1,e])

The output is

1/2*(e^(t^2) + y(t))/t^4

My expectation is that there shouldn't by any y(t) term in the output. If I make a seemingly meaningless tweak to my initial conditions:

desolve(de1, y, ics = [1,e*1])

I get the expected output of

1/2*(e + e^(t^2))/t^4

If I change the initial conditions to [1, e/2], I again get the output I expect. I haven't been able to reproduce this issue with any other example. Maybe the issue just comes in converting Sage's version of e into Maxima? Does anyone know what is going on here?

desolve initial condition involving e gives strange answer

I'm trying to do some basic differential equations in Sage. When I run the following:

var('t') 
y = function('y')(t)
de1 = t^3*diff(y, t) + 4*t^2*y == e^(t^2)
desolve(de1, y, ics = [1,e])

The output is

1/2*(e^(t^2) + y(t))/t^4

My expectation is that there shouldn't by any y(t) term in the output. If I make a seemingly meaningless tweak to my initial conditions:

desolve(de1, y, ics = [1,e*1])

I get the expected output of

1/2*(e + e^(t^2))/t^4

If I change the initial conditions to [1, e/2], I again get the output I expect. I haven't been able to reproduce this issue with any other example. Maybe the issue just comes in converting Sage's version of e into Maxima? Does anyone know what is going on here?