Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Real Algebraic Scheme question

I apologize if this question is too naive.

I need to know the irreducible components of an algebraic scheme defined over $\mathbb{R}$. I can get Sage to do this if I consider the scheme is defined over $\mathbb{Q}$, but this is not sufficient to answer my question over $\mathbb{R}$.

Can Sage actually do this for real algebraic schemes?

and here is the code I tried: K = RealField() A9 = AffineSpace(K, 2, 'a,b') A9.coordinate_ring().inject_variables() W=A9.subscheme([a*b^2]); W.is_irreducible()

Real Algebraic Scheme question

I apologize if this question is too naive.

I need to know the irreducible components of an algebraic scheme defined over $\mathbb{R}$. I can get Sage to do this if I consider the scheme is defined over $\mathbb{Q}$, but this is not sufficient to answer my question over $\mathbb{R}$.

Can Sage actually do this for real algebraic schemes?

and here is the code I tried: tried:

K = RealField()
A9 = AffineSpace(K, 2, 'a,b')
A9.coordinate_ring().inject_variables()
W=A9.subscheme([a*b^2]);
W.is_irreducible()

W.is_irreducible()
click to hide/show revision 3
retagged

Real Algebraic Scheme question

I apologize if this question is too naive.

I need to know the irreducible components of an algebraic scheme defined over $\mathbb{R}$. I can get Sage to do this if I consider the scheme is defined over $\mathbb{Q}$, but this is not sufficient to answer my question over $\mathbb{R}$.

Can Sage actually do this for real algebraic schemes?

and here is the code I tried:

K = RealField()
A9 = AffineSpace(K, 2, 'a,b')
A9.coordinate_ring().inject_variables()
W=A9.subscheme([a*b^2]);
W.is_irreducible()