I am a new student in SAGE. I read the following discussion:
evaluation of character of symmetric group
and then also read the manual.
However, I am still confused about some fundamental problem:
(I cannot find these function in "Sage Reference Manual: Groups, Release 8.2". Are both new functions?).
About
SymmetricGroupRepresentation(partition, implementation='specht', ring=None, cache_matrices=True)
I am confused about "partition". Suppose for $S_3$, and partition $=[2,1]$. What does it mean? (It seems $[1,2]$ is not valid)
About
spc = SymmetricGroupRepresentation([2,1], 'orthogonal') spc.representation_matrix(Permutation([1,2,3]))
When I use
spc.representation_matrix(Permutation([1,2]))
error pops out. However, as far as I know, $(1,2)$ is a valid permutation, which represent the matrix representation: $$\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{bmatrix}$$
I cannot find "Permutation" in "Sage Reference Manual: Group". Where can I find this function?