The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
1 | initial version |
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code does not give the expected answer.
Btw: One of the M-programs gives the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman
The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following following
Btw: One of the M-programs gives the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman
The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
live code following \href{live code}{http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage} does not give the expected answer.
Btw: One of the M-programs gives the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman
The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
\href{live code}{http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage} \href{lhttp://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage}{live code} does not give the expected answer.
Btw: One of the M-programs gives the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman
The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
\href{lhttp://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage}{live code} live code
sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not {\bf not} give the expected answer.
Btw: One of the M-programs gives {\bf gives}
http://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answerThe code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does {\bf not} give the expected answer.
Btw: One of the M-programs {\bf gives}
http://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sagehttp://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does {\bf not} not give the expected answer.
Btw: One of the M-programs {\bf gives}gives
http://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
http://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5Dhttps://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@crisman
@krisman
The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@krisman
@kcrisman
The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman The power of a matrix $A$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman
The For $k\in {\bf N}$ the $k$-th power of a matrix $A$ $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answeranswer.
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer.
15 | retagged |
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer.
The code to question 35658 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs gives
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
the correct answer.
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code
live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs givesM-programs
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
gives the correct answer.
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman
For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
live code
live code
http://sagecell.sagemath.org/?z=eJzLVrBVKEss0lDPVtfk5XK0zU0sKcqs0IiONtEx1DGK1Yk20DHS0TUBMwx1zGJjgaoK8ktsHeOyebmKM_LLNYA8oBiCo1dcmlSskW1roKmJKWioqQkA_MQgTQ==&lang=sage
does not give the expected answer.
Btw: One of the M-programs
M-programs
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
gives the correct answer.
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code does not give the expected answer.
Btw: One of the M-programs
M-programs
https://www.wolframalpha.com/input/?i=MatrixPower%5B%7B%7B4,1,2%7D,%7B0,2,-4%7D,%7B0,1,6%7D%7D,k%5D
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
@kcrisman
For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$.
Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following
live code does not give the expected answer.
Btw: One of the M-programs gives the correct answer.
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code does (currently) not give the expected answer.
Btw: One of the M-programs gives the correct answer.
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code does (currently) not give the expected answer.
Btw: One of the M-programs gives the correct answer.
23 | retagged |
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code does (currently) not give the expected answer.
Btw: One of the M-programs gives the correct answer.
24 | retagged |
The code to question 35658 gives a wrong answer i.e. for the matrix
A=matrix([[4,1,2],[0,2,-4],[0,1,6]])
Where can I find an improvement?
For $k\in {\bf N}$ the $k$-th power of a matrix $A\in {\bf R}^{n\times n}$ satisfies by definition the recursion $A^{k+1}=A*A^k$ and the initial condition $A^0=I$. Substitution of $k=0$ and $k=1$ should therefore give the identity matrix $I$ resp. the matrix $A$. The following live code does (currently) not give the expected answer.
Btw: One of the M-programs gives the correct answer.