A = matrix(GF(2), 8, 8, [])
b = vector(GF(2), [0, 1, 1, 0, 1, 0, 1, 1])
y = vector(GF(2), [0, 0, 0, 0, 1, 0, 1, 1])
x = vector(GF(2), [1, 0, 0, 0, 0, 0, 0, 0])
If the matrix $A$ is unkown, we have $Ax+b = y$.
How can we solve the matrix $A$?
| 1 | initial version |
A = matrix(GF(2), 8, 8, [])
b = vector(GF(2), [0, 1, 1, 0, 1, 0, 1, 1])
y = vector(GF(2), [0, 0, 0, 0, 1, 0, 1, 1])
x = vector(GF(2), [1, 0, 0, 0, 0, 0, 0, 0])
If the matrix $A$ is unkown, we have $Ax+b = y$.
How can we solve the matrix $A$?
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.