I want to submit an error report for SAGE 7.0 and 8.0:
The division of two polynomials in an ideal causes an kernel death after one hour of computation. Singular performs the calculation in about one second.
SAGE source code:
Q.<e,f,x,y> = QQ['E', 'F', 'X', 'Y'];
i1 = F^4+(E^3+E^2-E+2)F^3+(E^3-3E+1)F^2-(E^4+2E)*F+E^3+E^2;
i2 = Y^2+(E^3+E^2(3F+2)-E(F^2-2F-1)-F(F^2+3F+1))XY+(F(E+1)(E-F)(E+F+1)^2(E^2+E-F)(E^2+EF+E-F^2-F))Y-X^3-(F(E+1)(E-F)(E+F+1)(E^2+E-F))X^2;
J = Q.ideal(i1, i2);
R.<e,f,x,y> = QuotientRing(Q, J);
poly1 = x^4+(-e^2f^4+e^4f+2e^3f^2-ef^4-2ef^3+2f^4+2e^2f-6ef^2+f^3+5e^2-5ef+11f^2-17e+18f+16)x^3+(-2e^3-2e^2f+ef^2+f^3-3e^2+2f^2-e+f)x^2y+(-6e^2f^5+11ef^6-3f^7+3e^6-6e^5f+17e^4f^2-69e^2f^4+5ef^5+17f^6-5e^5+26e^4f+83e^3f^2-106e^2f^3-104ef^4+71f^5-28e^4+66e^3f+57e^2f^2-149ef^3+54f^4-55e^3+78e^2f+9ef^2-32f^3-35e^2+70ef-35f^2)x^2+(-e^2f^7-e^7f-3e^6f^2-2e^2f^6-ef^7-5e^6f-e^5f^2-6e^2f^5-6ef^6+2f^7+3e^5f-2e^4f^2-2e^2f^4-15ef^5+2f^6-2e^5-7e^4f-4e^3f^2-9e^2f^3-4ef^4+3e^4+20e^3f-43e^2f^2-21ef^3+28f^4-e^3-32e^2f-61ef^2+61f^3-22e^2-53ef+59f^2-16e+16f)xy+(e^6+2e^5f+3e^5-4e^3f^2-2e^2f^3+2ef^4+f^5+3e^4-5e^2f^2+2f^4+3e^3-3e^2f-ef^2+4f^3-3e^2+ef-9f^2+17e-18f-16)y^2+(11ef^9-3f^10-3e^9-5e^7f^2-101e^2f^7+30ef^8+11f^9-e^8-32e^7f-74e^6f^2-422e^2f^6-117ef^7+121f^8+35e^7-39e^6f-134e^5f^2-486e^2f^5-660ef^6+276f^7+141e^6-106e^5f-226e^4f^2+384e^2f^4-1019ef^5+36f^6+189e^5-367e^4f-681e^3f^2+1382e^2f^3+130ef^4-884f^5+61e^4-1019e^3f+565e^2f^2+1914ef^3-1521f^4-251e^3-499e^2f+1751ef^2-1001f^3-231e^2+462ef-231f^2)y;
poly2 = x+e^5f+e^4f^2-e^2f^4+2e^4f+e^3f^2-3e^2f^3+f^5+3e^3f-3e^2f^2-3ef^3+3f^4+e^3+e^2f-5ef^2+3f^3+e^2-2e*f+f^2;
print (poly1 / poly2);
Singular source code:
ring R = 0,(x,y,e,f),dp;
poly i1 = f^4+(e^3+e^2-e+2)f^3+(e^3-3e+1)f^2-(e^4+2e)*f+e^3+e^2;
poly i2 = y^2 + (e^3 + e^2(3f+2) - e(f^2-2f-1) - f(f^2+3f+1))xy + (f * (e+1) * (e-f) * (e+f+1)^2 * (e^2+e-f) * (e^2+e*f+e-f^2-f)) * y - x^3 - (f * (e+ 1) * (e-f) * (e+f+1) * (e^2+e-f)) * x^2;
ideal I = i1,i2;
ideal J = std(I);
reduce((x^4 + (-e^2f^4 + e^4f + 2e^3f^2 - ef^4 - 2ef^3 + 2f^4 + 2e^2
f - 6ef^2 + f^3 + 5e^2 - 5ef + 11f^2 - 17e + 18f + 16)x^3 + (-2e^3 - 2
e^2f + ef^2 + f^3 - 3e^2 + 2f^2 - e + f)x^2y + (-6e^2f^5 + 11ef^6 - 3
*f^7 + 3e^6 - 6e^5f + 17e^4f^2 - 69e^2f^4 + 5ef^5 + 17f^6 - 5e^5 + 26
e^4f + 83e^3f^2 - 106e^2f^3 - 104ef^4 + 71f^5 - 28e^4 + 66e^3f + 57*
e^2f^2 - 149ef^3 + 54f^4 - 55e^3 + 78e^2f + 9ef^2 - 32f^3 - 35e^2 + 7
0ef - 35f^2)x^2 + (-e^2f^7 - e^7f - 3e^6f^2 - 2e^2f^6 - ef^7 - 5e^6
f - e^5f^2 - 6e^2f^5 - 6ef^6 + 2f^7 + 3e^5f - 2e^4f^2 - 2e^2f^4 - 15
ef^5 + 2f^6 - 2e^5 - 7e^4f - 4e^3f^2 - 9e^2f^3 - 4ef^4 + 3e^4 + 20
e^3f - 43e^2f^2 - 21ef^3 + 28f^4 - e^3 - 32e^2f - 61ef^2 + 61f^3 - 22
*e^2 - 53ef + 59f^2 - 16e + 16f)xy + (e^6 + 2e^5f + 3e^5 - 4e^3f^2 -
2e^2f^3 + 2ef^4 + f^5 + 3e^4 - 5e^2f^2 + 2f^4 + 3e^3 - 3e^2f - ef^2
+ 4f^3 - 3e^2 + ef - 9f^2 + 17e - 18f - 16)y^2 + (11ef^9 - 3f^10 - 3
e^9 - 5e^7f^2 - 101e^2f^7 + 30ef^8 + 11f^9 - e^8 - 32e^7f - 74e^6f^2
- 422e^2f^6 - 117ef^7 + 121f^8 + 35e^7 - 39e^6f - 134e^5f^2 - 486e^2*
f^5 - 660ef^6 + 276f^7 + 141e^6 - 106e^5f - 226e^4f^2 + 384e^2f^4 - 10
19ef^5 + 36f^6 + 189e^5 - 367e^4f - 681e^3f^2 + 1382e^2f^3 + 130ef^4
- 884f^5 + 61e^4 - 1019e^3f + 565e^2f^2 + 1914ef^3 - 1521f^4 - 251e^3
- 499e^2f + 1751ef^2 - 1001f^3 - 231e^2 + 462ef - 231f^2)y)/(x + e^5*
f + e^4f^2 - e^2f^4 + 2e^4f + e^3f^2 - 3e^2f^3 + f^5 + 3e^3f - 3e^2f^
2 - 3ef^3 + 3f^4 + e^3 + e^2f - 5ef^2 + 3f^3 + e^2 - 2ef + f^2), J);
Singular output:
15yef9-3yf10+23ye9-33ye7f2-93ye2f7+27yef8+15yf9-3x2e7+62ye8+6x2e6f-82ye7f-12x2e5f2-3xye5f2-147ye6f2-6x2e2f5+3xye2f5+15x2ef6-366ye2f6-3x2f7-120yef7+120yf8-6x2e6+2xye6+8ye7+21x2e5f-3xye5f-67ye6f-12x2e4f2-3xye4f2-121ye5f2-57x2e2f4+6xye2f4-6x2ef5-3xyef5-405ye2f5+21x2f6-513yef6+225yf7-18x2e5-xye5+97ye6+93x2e4f-4xye4f-233ye5f+3x3e2f2+9x2e3f2-12xye3f2-82ye4f2-93x2e2f3-45xye2f3-81x2ef4+12xyef4+138ye2f4+54x2f5+12xyf5-816yef5+57yf6-3x3e3-36x2e4+21xye4+44ye5+3x3e2f+120x2e3f+41xye3f-120ye4f-3x3ef2-36x2e2f2-49xye2f2-3y2e2f2-215ye3f2-90x2ef3-30xyef3+648ye2f3+39x2f4+33xyf4-277yef4-483yf5+6x3e2-43x2e3-6xye3+3y2e3-455ye4-6x3ef+78x2e2f-66xye2f-3y2e2f-485ye3f+15x3f2-10xyef2+3y2ef2+641ye2f2-27x2f3+33xyf3+1130yef3-1152yf4-18x3e-16x2e2-64xye2-6y2e2-832ye3+3x3f+83x2ef-66xyef+6y2ef-352ye2f-39x2f2+86xyf2-15y2f2+1830yef2-1140yf3+30x3-37x2e-27xye+18y2e-658ye2+26x2f+26xyf-3y2f+780yef-443yf2+2x2+9xy-29y2-11ye-221yf-318y