Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Finding roots of equation made of Bessel functions, some of which have complex arguments

I want to find the roots (values or w) for an equation of spherical Bessel functions for L = 1 and \Omega^2 = 14.28 (capital Omega, not w):

My code is:

L = 1

ome = 14.28 #MeV

w = var('w')

Arg1 = sqrt(ome*(1-w^2))

Arg2 = Isqrt(ome)w

a = -I*sqrt(1-w^2)

b = spherical_bessel_J(L-1, Arg1)

c = spherical_bessel_J(L, Arg1)

d = spherical_bessel_J(L, Arg2)+I*spherical_bessel_Y(L, Arg2)

e = spherical_bessel_J(L-1, Arg2)+I*spherical_bessel_Y(L-1, Arg2)

eq = a(b/c)(d/e)-w == 0

eq.find_root(0, 1)

But I get an error on line 12, which specifies:

"TypeError: unable to convert 3.77888872553824*I to float; use abs() or real_part() as desired"

Finding roots of equation made of Bessel functions, some of which have complex arguments

I want to find the roots (values or w) for an equation of spherical Bessel functions for L = 1 and \Omega^2 = 14.28 (capital Omega, not w):

My code is:

L = 1

ome = 14.28 #MeV

w = var('w')

Arg1 = sqrt(ome*(1-w^2))

Arg2 = Isqrt(ome)w

a = -I*sqrt(1-w^2)

b = spherical_bessel_J(L-1, Arg1)

c = spherical_bessel_J(L, Arg1)

d = spherical_bessel_J(L, Arg2)+I*spherical_bessel_Y(L, Arg2)

e = spherical_bessel_J(L-1, Arg2)+I*spherical_bessel_Y(L-1, Arg2)

eq = a(b/c)(d/e)-w == 0

eq.find_root(0, 1)

But I get an error on line 12, which specifies:

"TypeError: unable to convert 3.77888872553824*I to float; use abs() or real_part() as desired"

Finding roots of equation made of Bessel functions, some of which have complex arguments

I want to find the roots (values or w) for an equation of spherical Bessel functions for L = 1 and \Omega^2 = 14.28 (capital Omega, not w):

My code is:

L = 1

ome = 14.28 #MeV

w = var('w')

Arg1 = sqrt(ome*(1-w^2))

Arg2 = Isqrt(ome)w

a = -I*sqrt(1-w^2)

b = spherical_bessel_J(L-1, Arg1)

c = spherical_bessel_J(L, Arg1)

d = spherical_bessel_J(L, Arg2)+I*spherical_bessel_Y(L, Arg2)

e = spherical_bessel_J(L-1, Arg2)+I*spherical_bessel_Y(L-1, Arg2)

eq = a(b/c)(d/e)-w == 0

eq.find_root(0, 1)

But I get an error on line 12, which specifies:

"TypeError: unable to convert 3.77888872553824*I to float; use abs() or real_part() as desired"

Finding roots of equation made of Bessel functions, some of which have complex arguments

I want to find the roots (values or w) for an equation of spherical Bessel functions for L = 1 and \Omega^2 = 14.28 (capital Omega, not w):

My code is:

L = 1

ome = 14.28 #MeV

w = var('w')

Arg1 = sqrt(ome*(1-w^2))

Arg2 = Isqrt(ome)w

a = -I*sqrt(1-w^2)

b = spherical_bessel_J(L-1, Arg1)

c = spherical_bessel_J(L, Arg1)

d = spherical_bessel_J(L, Arg2)+I*spherical_bessel_Y(L, Arg2)

e = spherical_bessel_J(L-1, Arg2)+I*spherical_bessel_Y(L-1, Arg2)

eq = a(b/c)(d/e)-w == 0

eq.find_root(0, 1)

But I get an error on line 12, which specifies:

"TypeError: unable to convert 3.77888872553824*I to float; use abs() or real_part() as desired"

Finding roots of equation made of Bessel functions, some of which have complex arguments

I want to find the roots (values or w) for an equation of spherical Bessel functions for L = 1 and \Omega^2 = 14.28 (capital Omega, not w):

My code is:

L = 1

1

ome = 14.28 #MeV

#MeV

w = var('w')

var('w')

Arg1 = sqrt(ome*(1-w^2))

sqrt(ome*(1-w^2))

Arg2 = Isqrt(ome)w

I*sqrt(ome)*w

a = -I*sqrt(1-w^2)

-I*sqrt(1-w^2)

b = spherical_bessel_J(L-1, Arg1)

Arg1)

c = spherical_bessel_J(L, Arg1)

Arg1)

d = spherical_bessel_J(L, Arg2)+I*spherical_bessel_Y(L, Arg2)

Arg2)

e = spherical_bessel_J(L-1, Arg2)+I*spherical_bessel_Y(L-1, Arg2)

Arg2)

eq = a(b/c)(d/e)-w a*(b/c)*(d/e)-w == 0

0

eq.find_root(0, 1)

1)

But I get an error on line 12, which specifies:

"TypeError: unable to convert 3.77888872553824*I to float; use abs() or real_part() as desired"

click to hide/show revision 6
retagged

Finding roots of equation made of Bessel functions, some of which have complex arguments

I want to find the roots (values or w) for an equation of spherical Bessel functions for L = 1 and \Omega^2 = 14.28 (capital Omega, not w):

My code is:

L = 1

ome = 14.28 #MeV

w = var('w')

Arg1 = sqrt(ome*(1-w^2))

Arg2 = I*sqrt(ome)*w

a = -I*sqrt(1-w^2)

b = spherical_bessel_J(L-1, Arg1)

c = spherical_bessel_J(L, Arg1)

d = spherical_bessel_J(L, Arg2)+I*spherical_bessel_Y(L, Arg2)

e = spherical_bessel_J(L-1, Arg2)+I*spherical_bessel_Y(L-1, Arg2)

eq = a*(b/c)*(d/e)-w == 0

eq.find_root(0, 1)

But I get an error on line 12, which specifies:

"TypeError: unable to convert 3.77888872553824*I to float; use abs() or real_part() as desired"