Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Obtaining lattices quickly in SAGE

At the moment I use

posets = [p for p in Posets(n) if p.is_connected() and p.is_lattice()]

to obtain all connected lattices via SAGE. But this takes terrible long for n>=8. Is there a quicker way? It would somehow be natural when the connected lattices (or just connected posets) are saved in SAGE for some small n so that one does not have to filter trough the very large set of all posets.

Obtaining lattices quickly in SAGE

At the moment I use

posets = [p for p in Posets(n) if p.is_connected() and p.is_lattice()]

to obtain all connected lattices via SAGE. But this takes terrible long for n>=8. Is there a quicker way? It would somehow be natural when the connected lattices (or just connected posets) are saved in SAGE for some small n so that one does not have to filter trough the very large set of all posets.posets. For example there are 53 connected lattices with 7 points , while there are 2045 posets on 7 points.

click to hide/show revision 3
retagged

Obtaining lattices quickly in SAGE

At the moment I use

posets = [p for p in Posets(n) if p.is_connected() and p.is_lattice()]

to obtain all connected lattices via SAGE. But this takes terrible long for n>=8. Is there a quicker way? It would somehow be natural when the connected lattices (or just connected posets) are saved in SAGE for some small n so that one does not have to filter trough the very large set of all posets. For example there are 53 connected lattices with 7 points , while there are 2045 posets on 7 points.

click to hide/show revision 4
None

Obtaining lattices quickly in SAGE

At the moment I use

posets = [p for p in Posets(n) if p.is_connected() and p.is_lattice()]

p.is_lattice()]

to obtain all connected lattices via SAGE. But this takes terrible long for n>=8. Is there a quicker way? It would somehow be natural when the connected lattices (or just connected posets) are saved in SAGE for some small n so that one does not have to filter trough the very large set of all posets. For example there are 53 connected lattices with 7 points , while there are 2045 posets on 7 points.