d=var('d') d is integer and d>4
f(d)=1/6(d^2 - sqrt(d^2 + 8d - 8)d + 23d - sqrt(d^2 + 8d - 8) - 26)(d - sqrt(d^2 + 8*d - 8) + 4)/(d + 1)
How can I show that f(d)>=0
bool(f(d)>=0) and bool(f(d)<0) return false
| 1 | initial version | |
d=var('d') d is integer and d>4
f(d)=1/6(d^2 - sqrt(d^2 + 8d - 8)d + 23d - sqrt(d^2 + 8d - 8) - 26)(d - sqrt(d^2 + 8*d - 8) + 4)/(d + 1)
How can I show that f(d)>=0
bool(f(d)>=0) and bool(f(d)<0) return false
d=var('d')
d d=var('d')
$d$ is integer and d>4$d>4$
f(d)=1/6(d^2
f(d)=1/6*(d^2 - sqrt(d^2 + How can I show that f(d)>=0$f(d)\ge 0$
bool(f(d)>=0) bool(f(d)>=0) and bool(f(d)<0) bool(f(d)<0) return false
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.