How do I generate direct product of symmetric group $S_n$ and additive group of integers modulo $\mathbb Z/n\mathbb Z$ or $\mathbb Z_n$.
1 | initial version |
How do I generate direct product of symmetric group $S_n$ and additive group of integers modulo $\mathbb Z/n\mathbb Z$ or $\mathbb Z_n$.
How do I generate cayley table for direct product of symmetric group $S_n$ and additive group of integers modulo $\mathbb Z/n\mathbb Z/m\mathbb Z$ or $\mathbb Z_n$.Z_m$.
How do I generate cayley table for direct product of symmetric group $S_n$ and additive group of integers modulo $\mathbb Z/m\mathbb Z$ or $\mathbb Z_m$.