Processing math: 100%
Ask Your Question

Revision history [back]

click to hide/show revision 5
No.5 Revision

Finding a γ to define a number field like E(X5γ)E=\Q(ζ5)(X5γ)

By working with eliptic curves, I found that the extension E defined by:

E.< a> = NumberField(x^20 - 2x^19 - 2x^18 + 18x^17 - 32x^16 + 88x^15 + 58x^14 - 782x^13 + 1538x^12 + 1348x^11 - 466x^10 - 894x^9 + 346x^8 - 114x^7 - 424x^6 - 88x^5 + 214x^4 + 54x^3 + 14x^2 + 4*x + 1)

Is a cyclic Kummer extension of degree 5 over Q(ζ5), thus by the clasification of Kummer extensions, it exists γQ(ζ5) such that E=Q(5γ).

So, about all the polynomials f that define E how do I find γ such that the polynomial X5γ also define E?

click to hide/show revision 6
No.6 Revision

Finding a γ to define a number field like E=\Q(ζ5)(X5γ)E=Q(ζ5)(X5γ)

By working with eliptic curves, I found that the extension E defined by:

E.< a> = NumberField(x^20 - 2x^19 - 2x^18 + 18x^17 - 32x^16 + 88x^15 + 58x^14 - 782x^13 + 1538x^12 + 1348x^11 - 466x^10 - 894x^9 + 346x^8 - 114x^7 - 424x^6 - 88x^5 + 214x^4 + 54x^3 + 14x^2 + 4*x + 1)

Is a cyclic Kummer extension of degree 5 over Q(ζ5), thus by the clasification of Kummer extensions, it exists γQ(ζ5) such that E=Q(5γ).

So, about all the polynomials f that define E how do I find γ such that the polynomial X5γ also define E?

click to hide/show revision 7
No.7 Revision

Finding a γ to define a number field like E=Q(ζ5)(X5γ)

By working with eliptic curves, I found that the extension E defined by:

E.< a> = NumberField(x^20 - 2x^19 - 2x^18 + 18x^17 - 32x^16 + 88x^15 + 58x^14 - 782x^13 + 1538x^12 + 1348x^11 - 466x^10 - 894x^9 + 346x^8 - 114x^7 - 424x^6 - 88x^5 + 214x^4 + 54x^3 + 14x^2 + 4*x + 1)

Is a cyclic Kummer extension of degree 5 over Q(ζ5), thus by the clasification of Kummer extensions, it exists γQ(ζ5) such that E=Q(5γ).

So, about all the polynomials f that define E how do I find γ such that the polynomial X5γ also define E?

click to hide/show revision 8
No.8 Revision

Finding a γ to define a number field like E=Q(ζ5)(X5γ)

By working with eliptic curves, I found that the extension E defined by:

E.< a>

E.<a> = NumberField(x^20 - 2x^19 2*x^19 - 2*x^18 + 18*x^17 - 32*x^16 + 88*x^15 + 58*x^14 -
  2x^18 + 18x^17 - 32x^16 + 88x^15 +
 58x^14 - 782x^13 + 1538x^12 +
 1348x^11 - 466x^10 - 894x^9 +
 346x^8 - 114x^7 - 424x^6 - 88x^5 +
 214x^4           782*x^13 + 54x^3 1538*x^12 + 14x^2 1348*x^11 - 466*x^10 - 894*x^9 + 346*x^8 -
                    114*x^7 - 424*x^6 - 88*x^5 + 214*x^4 + 54*x^3 + 14*x^2 + 4*x + 1)

1)

Is a cyclic Kummer extension of degree 5 over Q(ζ5), thus by the clasification of Kummer extensions, it there exists γQ(ζ5) such that E=Q(5γ).

So, about all the polynomials f that define E how do I find γ such that the polynomial X5γ also define defines E?