How can I solve it by sage?
Sage: solve(-6-4y-x-(1+y)x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)x+2+x)^2)==0, (2(4+2y+x))(1+y)-(1+y)x+2+x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)x+2+x)^2)-(2+y)(-(1+y)x+2+x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)*x+2+x)^2))==0, x,y)
![]() | 1 | initial version |
How can I solve it by sage?
Sage: solve(-6-4y-x-(1+y)x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)x+2+x)^2)==0, (2(4+2y+x))(1+y)-(1+y)x+2+x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)x+2+x)^2)-(2+y)(-(1+y)x+2+x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)*x+2+x)^2))==0, x,y)
How can I solve it by sage?
Sage: solve(-6-4y-x-(1+y)x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)x+2+x)^2)==0, (2(4+2y+x))(1+y)-(1+y)x+2+x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)x+2+x)^2)-(2+y)(-(1+y)x+2+x+sqrt((4(1+y))(2+x)(4+2y+x)+(-(1+y)*x+2+x)^2))==0, x,y)solve(-6-4*y-x-(1+y)*x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)==0, (2*(4+2*y+x))*(1+y)-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)-(2+y)*(-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2))==0, x,y)