Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Solving system of ODEs

I'm trying to solve a system of 4 ODEs using Sage. I'm able to get a solution, but it's not at all what I expect. Here are the 4 equations:

dwdt=QxVx(t)QyVηw(t)QzVηw(t) dxdt=QyVγy(t)+QzVζz(t)QxVx(t) dydt=QyVηw(t)QyVγy(t) dzdt=QzVηw(t)QzVζz(t)

Here is how I've coded the problem in Sage.

eta, zeta, gamma = var('eta, zeta, gamma')
m_0, Qx, Qy, Qz, V = var('m_0, Q_x, Q_y, Q_z, V')
t = var('time')
w=function('w', t)
x=function('x', t)
y=function('y', t)
z=function('z', t)
dw = diff(w,t) - Qx/V*x + Qy/V*eta*w + Qz/V*eta*w == 0
dx = diff(x,t) - Qy/V*gamma*y - Qz/V*zeta*z + Qx/V*x == 0
dy = diff(y,t) - Qy/V*eta*w + Qy/V*gamma*y == 0
dz = diff(z,t) - Qz/V*eta*w + Qz/V*zeta*z == 0
eqs = [dw, dx, dy, dz]
vars = [w, x, y, z]
ics = [0, 0, m_0, 0, 0]
ans = desolve_system(eqs, vars, ics, ivar=t)
print ans

Where m_0 is an initial mass that exists in the x volume at time 0. All other volumes are empty at time 0.

I'm expecting relatively simple exponential equations as the solution, but what I get in return is some significantly more complex.

w(time)=Vγm0ζ(ηγ+(ηγ+η)ζ)V+γζ+L1(V4g22562γm0ζ+(QxQzQ2z)V2γ2m0ζ2(QxQzηm0ζ2+(Q2xQxQz)ηγ2m0)V3((Qxηγm0+Qxηm0ζ)V4((QxQz)γ2m0ζ+Qzγm0ζ2)V3)g2562(V3g32562+(QxV3η+((QxQz)γ+Qzζ+Qx)V2)g22562+(Q2xQzQxQ2z)γζ+((Q2xQzQxQ2z)ηγ+((Q2xQzQxQ2z)ηγ+(Q2xQzQxQ2z)η)ζ)V+((QxQzηζ+Q2xη+(Q2xQxQz)ηγ)V2+((Q2xQxQz)γ+(QxQz+(QxQzQ2z)γ)ζ)V)g2562)((ηγ+(ηγ+η)ζ)V+γζ),g2562,time) x(time)=Vηγm0ζ(ηγ+(ηγ+η)ζ)V+γζ+L1((QxQzQ2z)Vγ2m0ζ2+(QxQzη2m0ζ2+(Q2xQxQz)η2γ2m0)V3+((QxQzQ2z)ηγ2m0ζ+(QxQzQ2z)ηγm0ζ2)V2+(V3γm0ζ+(ηγm0+ηm0ζ)V4)g22562+((Qxη2γm0+Qxη2m0ζ)V4+((QxQz)ηγ2m0+Qxηγm0ζ+Qzηm0ζ2)V3+((QxQz)γ2m0ζ+Qzγm0ζ2)V2)g2562(V3g32562+(QxV3η+((QxQz)γ+Qzζ+Qx)V2)g22562+(Q2xQzQxQ2z)γζ+((Q2xQzQxQ2z)ηγ+((Q2xQzQxQ2z)ηγ+(Q2xQzQxQ2z)η)ζ)V+((QxQzηζ+Q2xη+(Q2xQxQz)ηγ)V2+((Q2xQxQz)γ+(QxQz+(QxQzQ2z)γ)ζ)V)g2562)((ηγ+(ηγ+η)ζ)V+γζ),g2562,time) y(time)=Vηm0ζ(ηγ+(ηγ+η)ζ)V+γζ+L1(V4ηg22562m0ζ+(QxQzη+(QxQzQ2z)ηγ)V2m0ζ2+(QxQzη2m0ζ2+QxQzη2m0ζ(Q2xQxQz)η2γm0)V3+(QxV4η2m0ζ+(Qzηm0ζ2+((QxQz)ηγ+Qxη)m0ζ)V3)g2562(V3g32562+(QxV3η+((QxQz)γ+Qzζ+Qx)V2)g22562+(Q2xQzQxQ2z)γζ+((Q2xQzQxQ2z)ηγ+((Q2xQzQxQ2z)ηγ+(Q2xQzQxQ2z)η)ζ)V+((QxQzηζ+Q2xη+(Q2xQxQz)ηγ)V2+((Q2xQxQz)γ+(QxQz+(QxQzQ2z)γ)ζ)V)g2562)((ηγ+(ηγ+η)ζ)V+γζ),g2562,time) z(time)=Vηγm0(ηγ+(ηγ+η)ζ)V+γζ+L1(V4ηg22562γm0(QxQzη2m0ζ((Q2xQxQz)η2γ2+(Q2xQxQz)η2γ)m0)V3+((QxQzQ2z)ηγ2m0ζ+(Q2xQxQz)ηγ2m0)V2+(QxV4η2γm0+(Qzηγm0ζ+((QxQz)ηγ2+Qxηγ)m0)V3)g2562(V3g32562+(QxV3η+((QxQz)γ+Qzζ+Qx)V2)g22562+(Q2xQzQxQ2z)γζ+((Q2xQzQxQ2z)ηγ+((Q2xQzQxQ2z)ηγ+(Q2xQzQxQ2z)η)ζ)V+((QxQzηζ+Q2xη+(Q2xQxQz)ηγ)V2+((Q2xQxQz)γ+(QxQz+(QxQzQ2z)γ)ζ)V)g2562)((ηγ+(ηγ+η)ζ)V+γζ),g2562,time)

Can anyone explain what I've done wrong?

click to hide/show revision 2
No.2 Revision

updated 9 years ago

calc314 gravatar image

Solving system of ODEs

I'm trying to solve a system of 4 ODEs using Sage. I'm able to get a solution, but it's not at all what I expect. Here are the 4 equations:

dwdt=QxVx(t)QyVηw(t)QzVηw(t) dxdt=QyVγy(t)+QzVζz(t)QxVx(t) dydt=QyVηw(t)QyVγy(t) dzdt=QzVηw(t)QzVζz(t)

Here is how I've coded the problem in Sage.

eta, zeta, gamma = var('eta, zeta, gamma')
m_0, Qx, Qy, Qz, V = var('m_0, Q_x, Q_y, Q_z, V')
t = var('time')
w=function('w', t)
x=function('x', t)
y=function('y', t)
z=function('z', t)
dw = diff(w,t) - Qx/V*x + Qy/V*eta*w + Qz/V*eta*w == 0
dx = diff(x,t) - Qy/V*gamma*y - Qz/V*zeta*z + Qx/V*x == 0
dy = diff(y,t) - Qy/V*eta*w + Qy/V*gamma*y == 0
dz = diff(z,t) - Qz/V*eta*w + Qz/V*zeta*z == 0
eqs = [dw, dx, dy, dz]
vars = [w, x, y, z]
ics = [0, 0, m_0, 0, 0]
ans = desolve_system(eqs, vars, ics, ivar=t)
print ans

Where m_0 is an initial mass that exists in the x volume at time 0. All other volumes are empty at time 0.

I'm expecting relatively simple exponential equations as the solution, but what I get in return is some significantly more complex.

\begin{equation} $$ w\left(\mathit{time}\right) = \frac{V \gamma m_{0} \zeta}{{\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta} + \mathcal{L}^{-1}\left(-\frac{V^{4} g_{2562}^{2} \gamma m_{0} \zeta + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} V^{2} \gamma^{2} m_{0} \zeta^{2} - {\left(Q_{x} Q_{z} \eta m_{0} \zeta^{2} + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma^{2} m_{0}\right)} V^{3} - {\left({\left(Q_{x} \eta \gamma m_{0} + Q_{x} \eta m_{0} \zeta\right)} V^{4} - {\left({\left(Q_{x} - Q_{z}\right)} \gamma^{2} m_{0} \zeta + Q_{z} \gamma m_{0} \zeta^{2}\right)} V^{3}\right)} g_{2562}}{{\left(V^{3} g_{2562}^{3} + {\left(Q_{x} V^{3} \eta + {\left({\left(Q_{x} - Q_{z}\right)} \gamma + Q_{z} \zeta + Q_{x}\right)} V^{2}\right)} g_{2562}^{2} + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \gamma \zeta + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta\right)} \zeta\right)} V + {\left({\left(Q_{x} Q_{z} \eta \zeta + Q_{x}^{2} \eta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma\right)} V^{2} + {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \gamma + {\left(Q_{x} Q_{z} + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \gamma\right)} \zeta\right)} V\right)} g_{2562}\right)} {\left({\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta\right)}}, g_{2562}, \mathit{time}\right) \end{equation} x(time)=Vηγm0ζ(ηγ+(ηγ+η)ζ)V+γζ+L1((QxQzQ2z)Vγ2m0ζ2+(QxQzη2m0ζ2+(Q2xQxQz)η2γ2m0)V3+((QxQzQ2z)ηγ2m0ζ+(QxQzQ2z)ηγm0ζ2)V2+(V3γm0ζ+(ηγm0+ηm0ζ)V4)g22562+((Qxη2γm0+Qxη2m0ζ)V4+((QxQz)ηγ2m0+Qxηγm0ζ+Qzηm0ζ2)V3+((QxQz)γ2m0ζ+Qzγm0ζ2)V2)g2562(V3g32562+(QxV3η+((QxQz)γ+Qzζ+Qx)V2)g22562+(Q2xQzQxQ2z)γζ+((Q2xQzQxQ2z)ηγ+((Q2xQzQxQ2z)ηγ+(Q2xQzQxQ2z)η)ζ)V+((QxQzηζ+Q2xη+(Q2xQxQz)ηγ)V2+((Q2xQxQz)γ+(QxQz+(QxQzQ2z)γ)ζ)V)g2562)((ηγ+(ηγ+η)ζ)V+γζ),g2562,time) y(time)=Vηm0ζ(ηγ+(ηγ+η)ζ)V+γζ+L1(V4ηg22562m0ζ+(QxQzη+(QxQzQ2z)ηγ)V2m0ζ2+(QxQzη2m0ζ2+QxQzη2m0ζ(Q2xQxQz)η2γm0)V3+(QxV4η2m0ζ+(Qzηm0ζ2+((QxQz)ηγ+Qxη)m0ζ)V3)g2562(V3g32562+(QxV3η+((QxQz)γ+Qzζ+Qx)V2)g22562+(Q2xQzQxQ2z)γζ+((Q2xQzQxQ2z)ηγ+((Q2xQzQxQ2z)ηγ+(Q2xQzQxQ2z)η)ζ)V+((QxQzηζ+Q2xη+(Q2xQxQz)ηγ)V2+((Q2xQxQz)γ+(QxQz+(QxQzQ2z)γ)ζ)V)g2562)((ηγ+(ηγ+η)ζ)V+γζ),g2562,time) \begin{equation} z\left(\mathit{time}\right) = \frac{V \eta \gamma m_{0}}{{\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta} + \mathcal{L}^{-1}\left(-\frac{V^{4} \eta g_{2562}^{2} \gamma m_{0} - {\left(Q_{x} Q_{z} \eta^{2} m_{0} \zeta - {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta^{2} \gamma^{2} + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta^{2} \gamma\right)} m_{0}\right)} V^{3} + {\left({\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \eta \gamma^{2} m_{0} \zeta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma^{2} m_{0}\right)} V^{2} + {\left(Q_{x} V^{4} \eta^{2} \gamma m_{0} + {\left(Q_{z} \eta \gamma m_{0} \zeta + {\left({\left(Q_{x} - Q_{z}\right)} \eta \gamma^{2} + Q_{x} \eta \gamma\right)} m_{0}\right)} V^{3}\right)} g_{2562}}{{\left(V^{3} g_{2562}^{3} + {\left(Q_{x} V^{3} \eta + {\left({\left(Q_{x} - Q_{z}\right)} \gamma + Q_{z} \zeta + Q_{x}\right)} V^{2}\right)} g_{2562}^{2} + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \gamma \zeta + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta\right)} \zeta\right)} V + {\left({\left(Q_{x} Q_{z} \eta \zeta + Q_{x}^{2} \eta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma\right)} V^{2} + {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \gamma + {\left(Q_{x} Q_{z} + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \gamma\right)} \zeta\right)} V\right)} g_{2562}\right)} {\left({\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta\right)}}, g_{2562}, \mathit{time}\right) \end{equation}$$

Can anyone explain what I've done wrong?

click to hide/show revision 3
retagged

updated 7 years ago

FrédéricC gravatar image

Solving system of ODEs

I'm trying to solve a system of 4 ODEs using Sage. I'm able to get a solution, but it's not at all what I expect. Here are the 4 equations:

dwdt=QxVx(t)QyVηw(t)QzVηw(t) dxdt=QyVγy(t)+QzVζz(t)QxVx(t) dydt=QyVηw(t)QyVγy(t) dzdt=QzVηw(t)QzVζz(t)

Here is how I've coded the problem in Sage.

eta, zeta, gamma = var('eta, zeta, gamma')
m_0, Qx, Qy, Qz, V = var('m_0, Q_x, Q_y, Q_z, V')
t = var('time')
w=function('w', t)
x=function('x', t)
y=function('y', t)
z=function('z', t)
dw = diff(w,t) - Qx/V*x + Qy/V*eta*w + Qz/V*eta*w == 0
dx = diff(x,t) - Qy/V*gamma*y - Qz/V*zeta*z + Qx/V*x == 0
dy = diff(y,t) - Qy/V*eta*w + Qy/V*gamma*y == 0
dz = diff(z,t) - Qz/V*eta*w + Qz/V*zeta*z == 0
eqs = [dw, dx, dy, dz]
vars = [w, x, y, z]
ics = [0, 0, m_0, 0, 0]
ans = desolve_system(eqs, vars, ics, ivar=t)
print ans

Where m_0 is an initial mass that exists in the x volume at time 0. All other volumes are empty at time 0.

I'm expecting relatively simple exponential equations as the solution, but what I get in return is some significantly more complex.

w\left(\mathit{time}\right) = \frac{V \gamma m_{0} \zeta}{{\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta} + \mathcal{L}^{-1}\left(-\frac{V^{4} g_{2562}^{2} \gamma m_{0} \zeta + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} V^{2} \gamma^{2} m_{0} \zeta^{2} - {\left(Q_{x} Q_{z} \eta m_{0} \zeta^{2} + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma^{2} m_{0}\right)} V^{3} - {\left({\left(Q_{x} \eta \gamma m_{0} + Q_{x} \eta m_{0} \zeta\right)} V^{4} - {\left({\left(Q_{x} - Q_{z}\right)} \gamma^{2} m_{0} \zeta + Q_{z} \gamma m_{0} \zeta^{2}\right)} V^{3}\right)} g_{2562}}{{\left(V^{3} g_{2562}^{3} + {\left(Q_{x} V^{3} \eta + {\left({\left(Q_{x} - Q_{z}\right)} \gamma + Q_{z} \zeta + Q_{x}\right)} V^{2}\right)} g_{2562}^{2} + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \gamma \zeta + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta\right)} \zeta\right)} V + {\left({\left(Q_{x} Q_{z} \eta \zeta + Q_{x}^{2} \eta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma\right)} V^{2} + {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \gamma + {\left(Q_{x} Q_{z} + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \gamma\right)} \zeta\right)} V\right)} g_{2562}\right)} {\left({\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta\right)}}, g_{2562}, \mathit{time}\right) \end{equation} \begin{equation} x\left(\mathit{time}\right) = \frac{V \eta \gamma m_{0} \zeta}{{\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta} + \mathcal{L}^{-1}\left(\frac{{\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} V \gamma^{2} m_{0} \zeta^{2} + {\left(Q_{x} Q_{z} \eta^{2} m_{0} \zeta^{2} + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta^{2} \gamma^{2} m_{0}\right)} V^{3} + {\left({\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \eta \gamma^{2} m_{0} \zeta + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \eta \gamma m_{0} \zeta^{2}\right)} V^{2} + {\left(V^{3} \gamma m_{0} \zeta + {\left(\eta \gamma m_{0} + \eta m_{0} \zeta\right)} V^{4}\right)} g_{2562}^{2} + {\left({\left(Q_{x} \eta^{2} \gamma m_{0} + Q_{x} \eta^{2} m_{0} \zeta\right)} V^{4} + {\left({\left(Q_{x} - Q_{z}\right)} \eta \gamma^{2} m_{0} + Q_{x} \eta \gamma m_{0} \zeta + Q_{z} \eta m_{0} \zeta^{2}\right)} V^{3} + {\left({\left(Q_{x} - Q_{z}\right)} \gamma^{2} m_{0} \zeta + Q_{z} \gamma m_{0} \zeta^{2}\right)} V^{2}\right)} g_{2562}}{{\left(V^{3} g_{2562}^{3} + {\left(Q_{x} V^{3} \eta + {\left({\left(Q_{x} - Q_{z}\right)} \gamma + Q_{z} \zeta + Q_{x}\right)} V^{2}\right)} g_{2562}^{2} + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \gamma \zeta + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta\right)} \zeta\right)} V + {\left({\left(Q_{x} Q_{z} \eta \zeta + Q_{x}^{2} \eta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma\right)} V^{2} + {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \gamma + {\left(Q_{x} Q_{z} + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \gamma\right)} \zeta\right)} V\right)} g_{2562}\right)} {\left({\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta\right)}}, g_{2562}, \mathit{time}\right) \end{equation} \begin{equation} y\left(\mathit{time}\right) = \frac{V \eta m_{0} \zeta}{{\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta} + \mathcal{L}^{-1}\left(-\frac{V^{4} \eta g_{2562}^{2} m_{0} \zeta + {\left(Q_{x} Q_{z} \eta + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \eta \gamma\right)} V^{2} m_{0} \zeta^{2} + {\left(Q_{x} Q_{z} \eta^{2} m_{0} \zeta^{2} + Q_{x} Q_{z} \eta^{2} m_{0} \zeta - {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta^{2} \gamma m_{0}\right)} V^{3} + {\left(Q_{x} V^{4} \eta^{2} m_{0} \zeta + {\left(Q_{z} \eta m_{0} \zeta^{2} + {\left({\left(Q_{x} - Q_{z}\right)} \eta \gamma + Q_{x} \eta\right)} m_{0} \zeta\right)} V^{3}\right)} g_{2562}}{{\left(V^{3} g_{2562}^{3} + {\left(Q_{x} V^{3} \eta + {\left({\left(Q_{x} - Q_{z}\right)} \gamma + Q_{z} \zeta + Q_{x}\right)} V^{2}\right)} g_{2562}^{2} + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \gamma \zeta + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta\right)} \zeta\right)} V + {\left({\left(Q_{x} Q_{z} \eta \zeta + Q_{x}^{2} \eta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma\right)} V^{2} + {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \gamma + {\left(Q_{x} Q_{z} + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \gamma\right)} \zeta\right)} V\right)} g_{2562}\right)} {\left({\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta\right)}}, g_{2562}, \mathit{time}\right) \end{equation} \begin{equation} z\left(\mathit{time}\right) = \frac{V \eta \gamma m_{0}}{{\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta} + \mathcal{L}^{-1}\left(-\frac{V^{4} \eta g_{2562}^{2} \gamma m_{0} - {\left(Q_{x} Q_{z} \eta^{2} m_{0} \zeta - {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta^{2} \gamma^{2} + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta^{2} \gamma\right)} m_{0}\right)} V^{3} + {\left({\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \eta \gamma^{2} m_{0} \zeta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma^{2} m_{0}\right)} V^{2} + {\left(Q_{x} V^{4} \eta^{2} \gamma m_{0} + {\left(Q_{z} \eta \gamma m_{0} \zeta + {\left({\left(Q_{x} - Q_{z}\right)} \eta \gamma^{2} + Q_{x} \eta \gamma\right)} m_{0}\right)} V^{3}\right)} g_{2562}}{{\left(V^{3} g_{2562}^{3} + {\left(Q_{x} V^{3} \eta + {\left({\left(Q_{x} - Q_{z}\right)} \gamma + Q_{z} \zeta + Q_{x}\right)} V^{2}\right)} g_{2562}^{2} + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \gamma \zeta + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left({\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta \gamma + {\left(Q_{x}^{2} Q_{z} - Q_{x} Q_{z}^{2}\right)} \eta\right)} \zeta\right)} V + {\left({\left(Q_{x} Q_{z} \eta \zeta + Q_{x}^{2} \eta + {\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \eta \gamma\right)} V^{2} + {\left({\left(Q_{x}^{2} - Q_{x} Q_{z}\right)} \gamma + {\left(Q_{x} Q_{z} + {\left(Q_{x} Q_{z} - Q_{z}^{2}\right)} \gamma\right)} \zeta\right)} V\right)} g_{2562}\right)} {\left({\left(\eta \gamma + {\left(\eta \gamma + \eta\right)} \zeta\right)} V + \gamma \zeta\right)}}, g_{2562}, \mathit{time}\right)

Can anyone explain what I've done wrong?