Processing math: 100%

First time here? Check out the FAQ!

Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

asked 10 years ago

jooyous gravatar image

Groebner basis computation with symbolic constants

Hello! If I have a system of polynomials in CC[x, y, z] or any other field, is there a way to create constants that are in that field in a way that makes Groebner basis computation still work? For example, if I want to compute the Groebner basis for the ideal generated by

y^2 + z - c1
x*y^2 - c2 - 2

Is there a way to indicate that the c1 and c2 are in CC or whatever field I'm in? I've figured out how to get them to not be indeterminates (over the symbolic ring),

Ideal (y^2 + z - c1, x*y^2 - c2 - 2) of Multivariate Polynomial Ring in x, y, z over Symbolic Ring

but then the polynomials containing them don't have division.

AttributeError: 'MPolynomialRing_polydict_with_category' object has no attribute 'monomial_divides'

Thank you!

click to hide/show revision 2
No.2 Revision

Groebner basis computation with symbolic constants

Hello! If I have a system of polynomials in CC[x, $CC[x, y, z] z]$ or any other field, is there a way to create constants that are in that field in a way that makes Groebner basis computation still work? For example, if I want to compute the Groebner basis for the ideal generated by

y^2 + z - c1
x*y^2 - c2 - 2

Is there a way to indicate that the c1 c1 and c2 c2 are in CC CC or whatever field I'm in? I've figured out how to get them to not be indeterminates (over the symbolic ring),

Ideal (y^2 + z - c1, x*y^2 - c2 - 2) of Multivariate Polynomial Ring in x, y, z over Symbolic Ring

but then the polynomials containing them don't have division.

AttributeError: 'MPolynomialRing_polydict_with_category' object has no attribute 'monomial_divides'

Thank you!