How to compute the multiplicative inverse of a series?
 After a formula of Sergei N. Gladkovskii the logarithm of
the generating function for the Pell numbers is the 
multiplicative inverse of sqrt(2) coth(sqrt(2) x)-1
seen as an exponential generating function.
 In the words of Maple:
 seq(k!*coeff(series(1/(sqrt(2)*coth(sqrt(2)*x)-1),x=0,k+2),x,k),k=0..9);
0, 1, 2, 2, -8, -56, -112, 848, 9088, 25216
 How can I do this with Sage?
 Added:
 If I want a compositional inverse this is what I do:
 SR ->  taylor -> PowerSeriesRing(SR) -> reversion() -> egf_to_ogf() -> padded_list()
 If I want a multiplicative inverse this is what I want to do:
 SR ->  taylor -> PowerSeriesRing(SR) -> inversion() -> egf_to_ogf() -> padded_list()
 Isn't this what one expects naturally? But I cannot find an 'inversion'.
 Solution d'après kcrisman 
 x = SR.var('x')
gf = (sqrt(2)*coth(sqrt(2)*x)-1)^-1
taylor(gf,x,0,9).power_series(SR).egf_to_ogf().padded_list()