Processing math: 100%
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Lagrange multipliers

When using Mixed Integer Linear Programming to find the minimum of a linear function f(x_1,...,x_n) under a set of constraints c_i(x_1,...,x_n) (equality or inequality constraints), I would like to have not only the solution and value but also the Lagrange multipliers for the constraints, namely values a_i such that, at the critical point: grad f = sum_i a_i grad c_i I imagine that the algorithm knows about them, but I can't find the relevant method to extract it.

click to hide/show revision 2
updated latex commands

updated 11 years ago

calc314 gravatar image

Lagrange multipliers

When using Mixed Integer Linear Programming to find the minimum of a linear function f(x_1,...,x_n) f(x1,...,xn) under a set of constraints c_i(x_1,...,x_n) ci(x1,...,xn) (equality or inequality constraints), I would like to have not only the solution and value but also the Lagrange multipliers for the constraints, namely values a_i such that, at the critical point: grad $$\text{grad} f = sum_i \sum_i a_i grad c_i \cdot \text{grad} c_i$$ I imagine that the algorithm knows about them, but I can't find the relevant method to extract it.

click to hide/show revision 3
No.3 Revision

updated 11 years ago

calc314 gravatar image

Lagrange multipliers

When using Mixed Integer Linear Programming to find the minimum of a linear function f(x1,...,xn) under a set of constraints ci(x1,...,xn) (equality or inequality constraints), I would like to have not only the solution and value but also the Lagrange multipliers for the constraints, namely values a_i ai such that, at the critical point: gradf=iaigradci I imagine that the algorithm knows about them, but I can't find the relevant method to extract it.