Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Is this wrong solution?

Hi, could you help me with this solution:

x,a=var('x,a')

f1=10/x

f2=x-5*a

assume(a>0,x>0)

print(solve([f1==f2],x)))

Solution given by Sage is:

[ x == 5/2a - 1/2sqrt(25*a^2 + 40),

x == 5/2a + 1/2sqrt(25*a^2 + 40) ]

The first solution is not solution for me and I don't understand why the Sage gave me it. When I change second equation slightly:

x,a=var('x,a')

f1=10/x

f2=x-6*a

assume(a>0,x>0)

print(solve([f1==f2],x)))

Solution given by Sage is correct:

[ x == 3a + sqrt(9a^2 + 10) ]

Could you help me explain the difference in results. Thank you in advance.

Is this wrong Wrong solution?

Hi, could you help me with this solution:solution of two equations on the interval:

x,a=var('x,a')

f1=10/x

f2=x-5*a

f2=x-5*a

assume(a>0,x>0)

print(solve([f1==f2],x)))

print(solve([f1==f2],x))

Solution given by Sage is:

[ x == 5/2a - 1/2sqrt(25*a^2 + 40),

x == 5/2a + 1/2sqrt(25*a^2 + 40) ]

The first solution is obviously not solution for me as it is always strictly negative and I don't understand why the Sage gave me it. Assumptions are clear: x has to be >0 When I change second equation slightly:

x,a=var('x,a')

f1=10/x

f2=x-6*a

assume(a>0,x>0)

print(solve([f1==f2],x)))

print(solve([f1==f2],x))

Solution given by Sage is correct:correct now (only the x>0 are reported):

[ x == 3a + sqrt(9a^2 + 10) ]

Could you help me explain the difference in results. I am not sure if problem is on python side or with some rules how Sage computes the results. Thank you in advance.

Wrong solution?

Hi, could you help me with this solution of two equations on the interval:

x,a=var('x,a')

f1=10/x

f2=x-5*a

assume(a>0,x>0)

print(solve([f1==f2],x))

Solution given by Sage is:

[ x == 5/2a - 1/2sqrt(25*a^2 + 40),

x == 5/2a + 1/2sqrt(25*a^2 + 40) ]

The first solution is obviously not solution for me as it is always strictly negative and I don't understand why the Sage gave me it. Assumptions are clear: x has to be >0 When I change second equation slightly:

x,a=var('x,a')

f1=10/x

f2=x-6*a

assume(a>0,x>0)

print(solve([f1==f2],x))

Solution given by Sage is correct now (only the x>0 are reported):

[ x == 3a + sqrt(9a^2 + 10) ]

Could you help me explain the difference in results. I am not sure if problem is on python side or with some rules how Sage computes the results. Thank you in advance.

click to hide/show revision 4
retagged

Wrong solution?

Hi, could you help me with this solution of two equations on the interval:

x,a=var('x,a')

f1=10/x

f2=x-5*a

assume(a>0,x>0)

print(solve([f1==f2],x))

Solution given by Sage is:

[ x == 5/2a - 1/2sqrt(25*a^2 + 40),

x == 5/2a + 1/2sqrt(25*a^2 + 40) ]

The first solution is obviously not solution for me as it is always strictly negative and I don't understand why the Sage gave me it. Assumptions are clear: x has to be >0 When I change second equation slightly:

x,a=var('x,a')

f1=10/x

f2=x-6*a

assume(a>0,x>0)

print(solve([f1==f2],x))

Solution given by Sage is correct now (only the x>0 are reported):

[ x == 3a + sqrt(9a^2 + 10) ]

Could you help me explain the difference in results. I am not sure if problem is on python side or with some rules how Sage computes the results. Thank you in advance.