While exploring cayley graphs of generalized dihedral groups I get a wrong result if I use GeneralDihedralGroup([n])
to create a simple dihedral group for some values on n
, 6 and 10 for instance. Sage responds that it is isomorphic to DihedralGroup(n)
, but the cayley graphs and group generators are not the same. Is it me or the system?
For example:
sage: gd=GeneralDihedralGroup([10])
sage: CGD10=Graph(gd.cayley_graph())
sage: CGD10.diameter()
4
sage: CGD10.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: dih10=DihedralGroup(10)
sage: sage: Cdih10=Graph(dih10.cayley_graph())
sage: Cdih10.diameter()
6
sage: Cdih10.degree()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: gd.is_isomorphic(DihedralGroup(10))
True
sage: dih10.gens()
[(1,2,3,4,5,6,7,8,9,10), (1,10)(2,9)(3,8)(4,7)(5,6)]
sage: gd.gens()
[(4,7)(5,6), (3,4,5,6,7), (1,2)]