Is it possible to perform euclidean division between two polynomial matrices in sage? e.g.if $A= \begin{bmatrix} x^2 +1 & x \newline 0&x-1 \end{bmatrix} , B=\begin{bmatrix} x & 2 \newline 1 &x-1 \end{bmatrix}$
are given find the matrices $Q,R$ so $A=QB +R$
in this example the answer is $Q= \begin{bmatrix} x & -1 \newline 0& 1 \end{bmatrix} , R=\begin{bmatrix} 2 & -1 \newline -1 & 0 \end{bmatrix}$