# rounding error .n() and N()

Why does 1.414 - sqrt(2).n(digits=4) not evaluate to zero?

sage: sqrt(2).n(digits=4)

1.414

sage: 1.414 - sqrt(2).n(digits=4)

-0.0002136

rounding error .n() and N()

Why does 1.414 - sqrt(2).n(digits=4) not evaluate to zero?

sage: sqrt(2).n(digits=4)

1.414

sage: 1.414 - sqrt(2).n(digits=4)

-0.0002136

add a comment

0

`sqrt(2).n(digits=4)`

returns a number which agrees with `sort(2)`

to 4 digits of precision, but it need not be obtained by truncating `sqrt(2)`

after 4 digits. I'm guessing that it's obtained by truncating `sqrt(2)`

after the necessary number of binary digits:

```
sage: a = sqrt(2).n(digits=4)
sage: a.n(digits=30)
1.41421508789062500000000000000
sage: b = sqrt(2).n(16)
sage: b.n(digits=30)
1.41421508789062500000000000000
sage: a == b
True
```

0

Hi,

This is because the two numbers do not live in the same ground field as you can see

```
sage: 1.414.parent()
Real Field with 53 bits of precision
sage: sqrt(2).n(digits=4).parent()
Real Field with 17 bits of precision
```

1.414 is not exactly represented in memory because it is not a diadic number. Two different diadic approximations with different precisions are different.

Vincent

Asked: **
2013-04-08 04:53:32 -0600
**

Seen: **128 times**

Last updated: **Apr 08 '13**

Undeterministic numerical approximation

4-Digit Rounding Arithmetic:System of Equations

Integrate() does not integrate

'object is not callable' error in sagetex (that doesn't occur in a worksheet)

Homomorphisms lifted from base ring in PowerSeriesRing do not preserve precision

Solving zeta function equation numerically

Difference between RealField and numerical_approx

plot of ratio of polynomials with coefficients varying from extremely big to extremely small values

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.