Question about parametric resolution of a nonlinear system.

asked 2025-10-28 11:52:44 +0100

Periodic_1_6 gravatar image

Question about parametric resolution of a nonlinear system.

Given the set of all Pythagorean quadruples a^2+b^2+c^2=d^2

a=u^2+v^2-s^2-t^2

b=2(ut+v*s)

c=2(vt-u*s)

d=u^2+v^2+s^2+t^2

and given a subset of Pythagorean quadruples that have the characteristic d+a=c^2

d+a=c^2

d=36m^2+18m+4n^2+2n+3

a=24mn+6m+6n+1=3(3N-3)/6+1

b=2(3m+n+1)(6m-2*n+1)

c=2(3m+n+1)

to learn more about this type of Pythagorean quadruple look here

https://drive.google.com/file/d/1AgSi...

the demonstration here

https://drive.google.com/file/d/11zU-...

I don't know how to solve the system in parametric solutions but this way doesn't work

import time
Start_Time = time.time()
var('N a b c d u v s t m n')

eq0 = N -65 == 0
eq1 = u^2+v^2-s^2-t^2 - a == 0
eq2 = 2*(u*t+v*s) - b == 0
eq3 = 2*(v*t-u*s) - c == 0
eq4 = u^2+v^2+s^2+t^2 - d == 0
eq5 = d+a - c^2 == 0
eq6 = 36*m^2+18*m+4*n^2+2*n+3 - d  == 0
eq7 = 24*m*n+6*m+6*n+1 - a == 0
eq8 = 2*(3*m+n+1)*(6*m-2*n+1) - b == 0
eq9 = 2*(3*m+n+1) - c == 0
eq10 = 3*(3*N-3)/6+1 - a == 0

solutions = solve([eq0,eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10],N,a,b,c,d,u,v,s,t,m,n)
sol = solutions
Execution_Time = time.time() - Start_Time
print (Execution_Time)
print(sol)

Is there any other working method?

edit retag flag offensive close merge delete

Comments

See answer to your earlier question: https://ask.sagemath.org/question/58455

Max Alekseyev gravatar imageMax Alekseyev ( 2025-10-28 17:25:26 +0100 )edit

@Max Alekseyev I tried but it gives me: ValueError: The dimension of the ideal is 7, but it should be 0

Periodic_1_6 gravatar imagePeriodic_1_6 ( 2025-10-28 18:54:25 +0100 )edit
Periodic_1_6 gravatar imagePeriodic_1_6 ( 2025-10-29 08:55:21 +0100 )edit

This basically means "too many degrees of freedom". You can assign some fixed values to some variables to reduce the ideal dimension to 0.

Max Alekseyev gravatar imageMax Alekseyev ( 2025-11-01 02:33:11 +0100 )edit