How do I declare a static finite field Element when modulus is a prime power ?
Simple question :
if I declare FF=GF(q) where q is a prime power of degree 12. And any of it’s element will be writen as a series of Integer*z12^degree+…
So now how to set a variable X belonging to FF to 0*z12^11 + 0*z12^10 + 16260673061341949275257563295988632869519996389676903622179081103440260644990*z12^9 + 0*z12^8 + 0*z12^7 + 0*z12^6 + 0*z12^5 + 0*z12^4 + 11559732032986387107991004021392285783925812861821192530917403151452391805634*z12^3 + 0*z12^2 + 0*z12 + 0
?