First time here? Check out the FAQ!

Ask Your Question
3

Solving radical inequalities

asked 13 years ago

Eviatar Bach gravatar image

Can this be solved in Sage?

x-4>sqrt(x-2)

The standard solve method does not work, and neither does solve_ineq.

Preview: (hide)

Comments

I've been playing around with this question for a while now. I tried maxima's fourier elimination package with no success. I can't find a solution in Sage. Embarrassingly, WolframAlpha has no trouble: http://www.wolframalpha.com/input/?i=x-4+%3E+sqrt%28x-2%29

benjaminfjones gravatar imagebenjaminfjones ( 13 years ago )

Yes, I noticed WA could solve it.

Eviatar Bach gravatar imageEviatar Bach ( 13 years ago )

solve_ineq even fires an error here

Juanlu001 gravatar imageJuanlu001 ( 13 years ago )

If you read the documentation for `solve_ineq` you'll see that if you simply call `solve_ineq` with an inequality as the argument, it passed it to Maxima assuming that it's a rational inequality (which this is certainly not). If you pass the inequality and variable as lists then it passes them to Maxima using the fourier elimination procedure which can solve some general non-linear inequalities, but not this one unfortunately. See "Case 1" and "Case 2" in the documentation for `solve_ineq`.

benjaminfjones gravatar imagebenjaminfjones ( 13 years ago )

Can you post your answer as an "answer" to "Can this be solved in Sage"?

Jason Grout gravatar imageJason Grout ( 13 years ago )

1 Answer

Sort by » oldest newest most voted
0

answered 13 years ago

benjaminfjones gravatar image

If you read the documentation for solve_ineq you'll see that if you call solve_ineq with an inequality as the argument, it's passed to Maxima assuming that it's a rational inequality (which this is certainly not). If you pass the inequality and variable as lists, Maxima is instructed to use the "Fourier elimination procedure" which can solve some general non-linear inequalities, but not this one unfortunately.

See "Case 1" and "Case 2" in the documentation for solve_ineq.

Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 13 years ago

Seen: 1,200 times

Last updated: Jul 04 '11